Grafting Hybrid and Monoecious Cucumbers onto Cucurbit Rootstocks Enhances Growth and Yield under Net House Conditions

Document Type : Original Research

Authors
1 Department of Vegetable Science, Horticulture College and Research Institute, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, Tamil Nadu, India.
2 ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala, India.
3 Division of Crop Production, ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala 695017, India.
4 ICAR-National Institute of Abiotic Stress Management, Baramati 413115, Maharashtra, India.
5 Department of Agricultural Statistics, Uttar Banga Krishi Viswavidyalaya, Cooch Behar, West Bengal, India.
Abstract
Grafting is an effective method to mitigate biotic and abiotic stresses while enhancing yield in horticultural crops. This study evaluated suitable cucurbitaceous rootstocks for improving cucumber yield and quality under net house conditions. Two cucumber cultivars, Green Long (GL an OPV (a monoecious, open-pollinated variety) and NS 408 (a F1 hybrid), were grafted onto five rootstocks: Cucurbita ficifolia, Cucurbita moschata, Cucurbita maxima, Lagenaria siceraria, and Luffa cylindrica. Results showed that NS 408 outperformed GL in both grafted and non-grafted conditions. Among the rootstocks, NS 408 grafted onto C. maxima (winter squash) had the highest graft survival (79 ± 1.8%), most extended vine length (700 ± 16 cm), and maximum fruit yield (8.3 ± 0.017 kg per plant, 118.42% increase over non-grafted NS 408). Grafting GL onto winter squash improved yield by 42.11% over non-grafted NS 408 and by 86.21% over GL control. Fruit quality parameters such as total soluble solids, palatability, ascorbic acid, and soluble protein were unaffected or improved, confirming that grafting did not negatively influence market quality. Economic analysis revealed the highest benefit-cost ratio (>2.5) in NS 408/WS, indicating that grafting is a cost-effective alternative to expensive hybrid seeds. These findings highlight the potential of grafting to optimize cucumber production, reduce reliance on pesticides, and improve profitability in protected cultivation.

Keywords

Subjects


AOAC. 2001. Official Methods of Analysis, 11th Ed. Association of Official Analytical chemists, Washington D.C., U.S.A.
Asghar, F., Ahmad, I., Mannan, A., Bozhuyuk, M. R., Moale, C. and Hakim, F. 2024. Influence of cucurbitaceae rootstocks on growth, yield and quality of grafted cucumber. Journal of Horticultural Science & Technology, 38–42. https://doi.org/10.46653/jhst24072038
Aslam, W., Noor, R.S., Hussain, F., Ameen, M., Ullah, S. and Chen, H. 2020. Evaluating Morphological Growth, Yield, and Postharvest Fruit Quality of Cucumber (Cucumis Sativus L.) Grafted on Cucurbitaceous Rootstocks. Agriculture, 10(4): 101.
Bayoumi, Y., Abd-Alkarim, E., El-Ramady, H., El-Aidy, F., Hamed, E. S., Taha, N., Prohens, J. and Rakha, M. 2021. Grafting Improves Fruit Yield of Cucumber Plants Grown under Combined Heat and Soil Salinity Stresses. Horticulturae, 7(3): 61. https://doi.org/10.3390/horticulturae7030061.
Davis, A.R., Perkins-Veazie, P., Hassell, R., Levi, A., King, S.R. and Zhang, X. 2008a. Grafting effects on vegetable quality. HortScience 2008, 43: 1670–1672.
Davis, A. R., Veazie, P. P., Sakata, Y.,  Galarza, S. L., Maroto, J. V.,  Lee, S. G., Huh, Y. C.,   Sun, Z., Miguel, A., King, S.R., Cohen, R. and Lee, J. M. 2008b. Cucurbit Grafting. Critical Reviews in Plant Sciences, 27(1): 50-74. https://doi.org/10.1080/07352680802053940.
Elsheery, N. I., Helaly, M. N., Omar, S. A., John, S. V. S. and Kalaji, H. M. 2020. Physiological and molecular mechanisms of salinity tolerance in grafted cucumber. South African Journal of Botany, 130: 38-48. https://doi.org/10.1016/j.sajb.2019.10.009.
Gaion, L. A., Braz, L. T. and Carvalho, R. F. 2018. Grafting in vegetable crops: A great technique for agriculture. International Journal of Vegetable Science, 24(1): 85-102. https://doi.org/10.1080/19315260.2017.1357069.
Guan, W., Zhao, X., Hassell, R. and Thies, J. 2012. Defense mechanisms involved in disease resistance of grafted vegetables. HortScience, 47(2): 164-170. https://doi.org/10.21273/HORTSCI.47.2.164.
Hedge, J. E. and Hofreiter. B. T. 1962. Carbohydrate chemistry 17. Whistler, R. L., & Be Miller, J. N., Eds., Academic Press, New York.
Heidari, A. A., Kashi, A., Saffari, Z. and Kalatejari, S. 2012. Effect of different Cucurbita rootstocks on survival rate, yield, and quality of greenhouse cucumber cv. Khassib. Plant Ecophysiology, 4: 21-28.
Izaba, O. F. R., Guan, W. and Torres, A. P. 2021. Economic analysis of growing grafted cucumber plants for high tunnel production. HortTechnology, 31(2): 181-187. https://doi.org/10.21273/HORTTECH04747-20.
Khapte, P. S., Kumar, P., Panwar, N. R., Burman, U., Rouphael, Y., & Kumar, P. 2021. Combined Influence of Grafting and Type of Protected Environment Structure on Agronomic and Physiological Traits of Single- and Cluster-Fruit-Bearing Cucumber Hybrids. Agronomy, 11: 1604.
Kumar, P., Khapte, P.S., Saxena, A. and Kumar, P. 2019a. Evaluation of gynoecious cucumber (Cucumis sativus) hybrids for early-summer greenhouse production in western Indian arid plains. Indian J. Agric. Sci., 89(3), 545–50.
Kumar, P., Khapte, P.S., Saxena, A., Singh, A., Panwar, N.R. and Kumar, P. 2019b. Intergeneric grafting for enhanced growth, yield and nutrient acquisition in greenhouse cucumber during winter. J. Environ. Biol., 40: 295-301.
Lee, J. M., Kubota, C., Tsao, S. J., Bie, Z., Echevarria, P. H., Morra, L. and Oda, M. 2010. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae127(2): 93-105. https://doi.org/10.1016/j.scienta.2010.08.003
Liu, B., Ren, J., Zhang, Y., An, J., Chen, M., Chen, H. and Zhang, Z. 2015. A new grafted rootstock against root-knot nematode for cucumber, melon, and watermelon. Agronomy for Sustainable Development, 35(2): 458-465. https://doi.org/10.1007/s13593-014-0234-5
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J biol Chem.193(1): 265-275.
Mani, A. K., Shanthi, R. and Sellamuthu, K. M. 2007. A handbook of laboratory analysis. 165-166 pp.
Mendiburu, F. and Yaseen, M. 2020.  Agricolae: Statistical Procedures for Agricultural Research. R package version 1.4.0. https://myaseen208.github.io/agricolae/https://cran.r-project.org/package=agricolae.
Patil, J., Goel, S. R. and Yadav, S. 2017. Bio-management of cucumber wilt complex caused by root-knot nematode, Meloidogyne incognita, and Fusarium oxysporum f. sp. cucumerinum in polyhouse conditions. Journal of Pure and Applied Microbiology, 11(2), 1061-1069. https://doi.org/10.22207/JPAM.11.2.34
R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Rouphael, Y., Cardarelli, M., Rea, E. and Colla, G. 2012. Grafting of cucumber as a means to minimize crop failure under salinity stress. Photosynthetica, 50(2): 278-288. https://doi.org/10.1007/s11099-012-0029-8
Rouphael, Y., Colla, G., Schneider, C., Schwarz, D., Khan, A. and Franken, P. 2010. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress, and organic pollutants. Scientia Horticulturae, 127(2): 162-171. https://doi.org/10.1016/j.scienta.2010.08.003
Sakthivel, M., Kavitha, M., Rani, C.I., Devrajan, K., Vanitha, K. 2024. Synergistic role of rootstock and grafting in boosting growth, yield, and quality of cucumber cultivation. Plant Science Today. 11(4):01-08. https://doi.org/10.14719/pst.5159
Sarwar, M., Amjad, M., Anjum, S., Alam, M.W., Ahmad, S., Ayyub, C. M., Ashraf, A., Hussain, R., Mannan, A., Ali, A., Shahid, A. and Hussain, T. 2019a. Improving Salt Stress Tolerance in Cucumber (Cucumis sativus L.) by Using Triacontanol. Journal of Horticultural Science & Technology, 20–26. Internet Archive. https://doi.org/10.46653/jhst190201020
 Sarwar, M., Ahmad, S., Chattha, M.B., Chattha, M.U., Alam, M.W., Anjum, S., Shafeeq, T., Naseem, M.K. and Mannan, A. 2019b. Assesment of growth and productivity of cucumber (cucumis sativus L.) Genotypes under salt stress regime. Applied Ecology & Environmental Research17(5): 10793-10806. http://dx.doi.org/10.15666/aeer/1705_1079310806
Sallaku, G., Sanden, H., Babaj, I., Kaciu, S. and Balliu, A. 2019. Specific nutrient absorption rates of transplanted cucumber seedlings are highly related to relative growth rates and influenced by grafting method, AMF inoculation, and nutrient availability. Scientia Horticulturae, 250: 313-321. https://doi.org/10.1016/j.scienta.2019.02.077
Shehata, S. A., Omar, H. S., Elfaidy, A. G. S. and El-Sayed, S. F. 2022. Grafting enhances drought tolerance by regulating stress-responsive gene expression and antioxidant enzyme activities in cucumbers. BMC Plant Biology, 22(1): 1-14. https://doi.org/10.1186/s12870-022-03752-x
Thangamani, C., Pugalendhi, L., Jaya Jasmine, A. and Punithaveni, V. 2019. Grafting techniques in cucumber using wild and cultivated cucurbits as rootstocks. Acta Hortic., 1241; 407-412.

Articles in Press, Accepted Manuscript
Available Online from 05 October 2025