AOAC. 2001. Official Methods of Analysis, 11th Ed. Association of Official Analytical chemists, Washington D.C., U.S.A.
Asghar, F., Ahmad, I., Mannan, A., Bozhuyuk, M. R., Moale, C. and Hakim, F. 2024. Influence of cucurbitaceae rootstocks on growth, yield and quality of grafted cucumber. Journal of Horticultural Science & Technology, 38–42. https://doi.org/10.46653/jhst24072038
Aslam, W., Noor, R.S., Hussain, F., Ameen, M., Ullah, S. and Chen, H. 2020. Evaluating Morphological Growth, Yield, and Postharvest Fruit Quality of Cucumber (Cucumis Sativus L.) Grafted on Cucurbitaceous Rootstocks. Agriculture, 10(4): 101.
Bayoumi, Y., Abd-Alkarim, E., El-Ramady, H., El-Aidy, F., Hamed, E. S., Taha, N., Prohens, J. and Rakha, M. 2021. Grafting Improves Fruit Yield of Cucumber Plants Grown under Combined Heat and Soil Salinity Stresses. Horticulturae, 7(3): 61. https://doi.org/10.3390/horticulturae7030061.
Davis, A.R., Perkins-Veazie, P., Hassell, R., Levi, A., King, S.R. and Zhang, X. 2008a. Grafting effects on vegetable quality. HortScience 2008, 43: 1670–1672.
Davis, A. R., Veazie, P. P., Sakata, Y., Galarza, S. L., Maroto, J. V., Lee, S. G., Huh, Y. C., Sun, Z., Miguel, A., King, S.R., Cohen, R. and Lee, J. M. 2008b. Cucurbit Grafting. Critical Reviews in Plant Sciences, 27(1): 50-74. https://doi.org/10.1080/07352680802053940.
Elsheery, N. I., Helaly, M. N., Omar, S. A., John, S. V. S. and Kalaji, H. M. 2020. Physiological and molecular mechanisms of salinity tolerance in grafted cucumber. South African Journal of Botany, 130: 38-48. https://doi.org/10.1016/j.sajb.2019.10.009.
Gaion, L. A., Braz, L. T. and Carvalho, R. F. 2018. Grafting in vegetable crops: A great technique for agriculture. International Journal of Vegetable Science, 24(1): 85-102. https://doi.org/10.1080/19315260.2017.1357069.
Guan, W., Zhao, X., Hassell, R. and Thies, J. 2012. Defense mechanisms involved in disease resistance of grafted vegetables. HortScience, 47(2): 164-170. https://doi.org/10.21273/HORTSCI.47.2.164.
Hedge, J. E. and Hofreiter. B. T. 1962. Carbohydrate chemistry 17. Whistler, R. L., & Be Miller, J. N., Eds., Academic Press, New York.
Heidari, A. A., Kashi, A., Saffari, Z. and Kalatejari, S. 2012. Effect of different Cucurbita rootstocks on survival rate, yield, and quality of greenhouse cucumber cv. Khassib. Plant Ecophysiology, 4: 21-28.
Izaba, O. F. R., Guan, W. and Torres, A. P. 2021. Economic analysis of growing grafted cucumber plants for high tunnel production. HortTechnology, 31(2): 181-187. https://doi.org/10.21273/HORTTECH04747-20.
Khapte, P. S., Kumar, P., Panwar, N. R., Burman, U., Rouphael, Y., & Kumar, P. 2021. Combined Influence of Grafting and Type of Protected Environment Structure on Agronomic and Physiological Traits of Single- and Cluster-Fruit-Bearing Cucumber Hybrids. Agronomy, 11: 1604.
Kumar, P., Khapte, P.S., Saxena, A. and Kumar, P. 2019a. Evaluation of gynoecious cucumber (Cucumis sativus) hybrids for early-summer greenhouse production in western Indian arid plains. Indian J. Agric. Sci., 89(3), 545–50.
Kumar, P., Khapte, P.S., Saxena, A., Singh, A., Panwar, N.R. and Kumar, P. 2019b. Intergeneric grafting for enhanced growth, yield and nutrient acquisition in greenhouse cucumber during winter. J. Environ. Biol., 40: 295-301.
Lee, J. M., Kubota, C., Tsao, S. J., Bie, Z., Echevarria, P. H., Morra, L. and Oda, M. 2010. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127(2): 93-105. https://doi.org/10.1016/j.scienta.2010.08.003
Liu, B., Ren, J., Zhang, Y., An, J., Chen, M., Chen, H. and Zhang, Z. 2015. A new grafted rootstock against root-knot nematode for cucumber, melon, and watermelon. Agronomy for Sustainable Development, 35(2): 458-465. https://doi.org/10.1007/s13593-014-0234-5
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J biol Chem., 193(1): 265-275.
Mani, A. K., Shanthi, R. and Sellamuthu, K. M. 2007. A handbook of laboratory analysis. 165-166 pp.
Mendiburu, F. and Yaseen, M. 2020. Agricolae: Statistical Procedures for Agricultural Research. R package version 1.4.0. https://myaseen208.github.io/agricolae/https://cran.r-project.org/package=agricolae.
Patil, J., Goel, S. R. and Yadav, S. 2017. Bio-management of cucumber wilt complex caused by root-knot nematode, Meloidogyne incognita, and Fusarium oxysporum f. sp. cucumerinum in polyhouse conditions. Journal of Pure and Applied Microbiology, 11(2), 1061-1069. https://doi.org/10.22207/JPAM.11.2.34
R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Rouphael, Y., Cardarelli, M., Rea, E. and Colla, G. 2012. Grafting of cucumber as a means to minimize crop failure under salinity stress. Photosynthetica, 50(2): 278-288. https://doi.org/10.1007/s11099-012-0029-8
Rouphael, Y., Colla, G., Schneider, C., Schwarz, D., Khan, A. and Franken, P. 2010. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress, and organic pollutants. Scientia Horticulturae, 127(2): 162-171. https://doi.org/10.1016/j.scienta.2010.08.003
Sakthivel, M., Kavitha, M., Rani, C.I., Devrajan, K., Vanitha, K. 2024. Synergistic role of rootstock and grafting in boosting growth, yield, and quality of cucumber cultivation. Plant Science Today. 11(4):01-08. https://doi.org/10.14719/pst.5159
Sarwar, M., Amjad, M., Anjum, S., Alam, M.W., Ahmad, S., Ayyub, C. M., Ashraf, A., Hussain, R., Mannan, A., Ali, A., Shahid, A. and Hussain, T. 2019a. Improving Salt Stress Tolerance in Cucumber (Cucumis sativus L.) by Using Triacontanol. Journal of Horticultural Science & Technology, 20–26. Internet Archive. https://doi.org/10.46653/jhst190201020
Sarwar, M., Ahmad, S., Chattha, M.B., Chattha, M.U., Alam, M.W., Anjum, S., Shafeeq, T., Naseem, M.K. and Mannan, A. 2019b. Assesment of growth and productivity of cucumber (cucumis sativus L.) Genotypes under salt stress regime. Applied Ecology & Environmental Research, 17(5): 10793-10806. http://dx.doi.org/10.15666/aeer/1705_1079310806
Sallaku, G., Sanden, H., Babaj, I., Kaciu, S. and Balliu, A. 2019. Specific nutrient absorption rates of transplanted cucumber seedlings are highly related to relative growth rates and influenced by grafting method, AMF inoculation, and nutrient availability. Scientia Horticulturae, 250: 313-321. https://doi.org/10.1016/j.scienta.2019.02.077
Shehata, S. A., Omar, H. S., Elfaidy, A. G. S. and El-Sayed, S. F. 2022. Grafting enhances drought tolerance by regulating stress-responsive gene expression and antioxidant enzyme activities in cucumbers. BMC Plant Biology, 22(1): 1-14. https://doi.org/10.1186/s12870-022-03752-x
Thangamani, C., Pugalendhi, L., Jaya Jasmine, A. and Punithaveni, V. 2019. Grafting techniques in cucumber using wild and cultivated cucurbits as rootstocks. Acta Hortic., 1241; 407-412.