Photoacoustic Technique Applied to the Assessment of the Dosage of a NPK Fertilizer in Maize (Zea mays L.)

Authors
Applied Science Research Group for the Development of the Eco-Region (GICADE) assigned to Interdisciplinary Institute of Sciences, University of Quindío, Armenia – Quindío, Colombia.
Abstract
The photosynthetic activity of maize plants (Zea mays L.) grown at different concentrations of a synthetic NPK fertilizer was evaluated and compared to explore an effective dosage criterium. The plants were grown under greenhouse conditions in a sterile medium to ensure controlled provision of nutrients. The Stomatal Density (SD) and Stomatal Index (SI) of the plants were estimated through micrograph analysis; while the rate of oxygen evolution, the absorption spectral curves, and the thermal diffusivity of the plant leaves were measured using the Photoacoustic Technique. The results regarding photosynthetic activity and thermal diffusivity indicated an oscillatory pattern of behavior during the growth period, and the characteristics of these oscillations were affected by the application of the NPK fertilizer. The photoacoustic spectroscopy analysis served to show that the treatment with the highest dosage of NPK fertilizer caused a decrease in the absorption of the chlorophyll a and b. Based on the results, the proposed methodology and used technique could have practicality in monitoring quantifiable variables to evaluate the influence that a fertilizer has on plants such as maize, which allows the determination of appropriate dosage.

Keywords

Subjects


1 Hamlyn G. J. 2014. A quantitative approach to environmental plant physiology. In Plants and Microclimate, edition n° 3rd; Cambridge University press Publisher: Cambridge, United Kingdom,; 1-7.
2 Chapin F. S. 1980. The Mineral Nutrition of Wild Plants. Ann Rev. Ecol. Syst. 11:233-60.
3 Sarwar N, Saifullah, Malhi S. S, Zia M. H, Naeem N, Bibia S and Farida G. 2010. Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric; 90: 925–937.
4 Liu C. W, Sung Y, Chen B. C and Lai H. Y. 2014. Effects of Nitrogen Fertilizers on the Growth and Nitrate Content of Lettuce (Lactuca sativa L.). Int. J. Environ. Res. Public Health, 11, 4427-4440.
5 Malkin, S.; Herber, S. K.; Fork, D. C. 1990. Light distribution, transfer and utilization in the marine red alga Porphyra perforata from photoacoustic energy-storage measurements. Biochim Biophys Acta., 1016, 177-189.
6 Rosencwaig, A.; Gersho, A. 1976. Theory of the photoacoustic effect with solids. J. Appl. Phys., 47, 64- 69.
7 Marín, E. 2008. Escuchando la luz: breve historia y aplicaciones del efecto fotoacústico. J. Phys. Educ., 2, 209-215.
8 Mandelis, A; Hess, P. The photoacoustic effect in photosynthesis. In Life and Earth Sciences, edition 3rd. SPIE publisher: Washington, US, 1997, 17-54.
9 Bedoya, A.; Marín, E.; Manzanares, A. M.; Zambrano-Arjona, M. Riech, I. On the thermal characterization of solids by photoacoustic calorimetry: thermal diffusivity and linear thermal expansion coefficient. Thermochimica Acta. 2015, 614, 52-58.
10 Rao, N. K.; Hanson, J.; Dulloo, M.E.; Ghosh, K.; Novell, D.; Larinde, M. 2007. Manual para el manejo de semillas en bancos de germoplasma. In Manuales para Bancos de Germoplasmas, edition 8th. Bioversity International Publisher: Roma, Italia, 56-91.
11 Gordillo-Delgado, F.; Zarate, F.; Mejía, C.; Rivera, L.; Ariza-Calderón, H. 2007. Análisis de la actividad fotosintética de plantas de café utilizando la técnica fotoacústica. Revist. Colombiana de Física., 40, 186-189.
12 Nakaji T, Fukami M, Dokiya Y and Izuta T. 2001. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees 15:453–461.
13 Roussel, M. R.; Ivlev, A. A.; Igamberdiev, A. U. 2007. Oscillations of the internal CO2 concentration in tobacco leaves transferred to low Co2. J. Plant. Physiol., 164, 1188-1196.
14 Roussel, M. R.; Ivlev, A. A.; Igamberdiev, A. U. 2011. Dynamics and mechanisms of oscillatory photosynthesis. BioSystems, ,103, 230-238.
15 Walker, D. A. 1992. Concerning oscillations. Photosynthesis Research., 34, 387-395.
16 21 Bondada
17 Gordillo-Delgado, F.; Marín, E.; Calderón, A. 2016. Effect of Azospirillum brasilense and Burkholderia unamae bacteria on maize photosynthetic activity evaluated using photoacoustic technique”. Int J Thermophys. 37, 1-11.
18 Richardson, A. J.; Walne, A. W.; John, W. G.; Jonas, T. D.; Lindley, J. A.; Sims, D. W.; Witt, M. 2006. Using continuous plankton recorder data”. Progr Oceanogr., 68, 27-74.
19 Morteza, E.; Moaveni, P.; Farahani, H.A.; Kiyani, M. 2013. Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springer Plus., 2: 247.
20 Malkin S and Puchenkov O. V. 1997. The Photoacoustic Effect in Photosynthesis, Progress In Photothermal and Photacoustic Science and Technology Vol. 3, edited by A. Mandelis and P. Hess (SPIE, Bellingham, WA,), Chap. 2.
21 Bondada B. R and Syvertsen J. P. 2003 Leaf chlorophyll, net gas exchange and chloroplast ultrastructure in citrus leaves of different nitrogen status. Tree Physiology 23, 553–559.
22 Bilger W and Bjorkman O. 1990. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis Photosynthesis Research 25: 173-185.
23 CiampittiI A and Garcia F. O. 2007. Requerimientos nutricionales absorción y extracción de macronutrientes y nutrientes secundarios. IPNI 33: 11.
24 Jacob T. B, Jeremiah L. M, Brian D. A and William R. R. 2018. Effect of nitrogen fertilizer source on corn (Zea mays L.) optical sensor response index values in a rain-fed environment. Journal of Plant Nutrition ISSN: 0190-4167.