Abd-Ella, A.A., Gaber, A.S., Abdel-Rahman, Y.A., Abobaker, A.A.S. and Elghareeb, T.A. 2022. Field efficiency of nano and conventional formulations of certain neonicotinoid insecticides against oleander scale insect, Aspidiotus nerii Bouché (Hemiptera: Diaspididae) on certain olive varieties. Egypt. Acad. J. Biol. Sci., F. Toxicol. Pest Control, 14(2): 13-23.
Agathokleous, E., Feng, Z., Iavicoli, I. and Calabrese, E.J. 2020. Nano-pesticides: a great challenge for biodiversity? The need for a broader perspective. Nano Today, 30: 100808.
Ahmadi, Z., Saber, M., Akbari, A. and Mahdavinia, Gh.R. 2018a. Encapsulation of Satureja hortensis L. (Lamiaceae) in chitosan/TPP nano-particles with enhanced acaricide activity against Tetranychus urticae Koch (Acari: Tetranychidae). Ecotoxicol. Environmen. Saf, 161: 111-119.
Ahmadi, Z., Saber, M., Bagheri, M.and Mahdavinia, Gh.R. 2018b. Achillea millefolium essential oil and chitosan nanocapsules with enhanced activity against Tetranychus urticae. J. Pest Sci. 91(4): 837-848.
Ahmadi, Z., Saber, M., Bagheri, M. and Mahdavinia, Gh.R. 2020. Nanoencapsulation of clofentezine with enhanced acaricidal activity against the two spotted mite, Tetranychus urticae Koch (Acari: Tetranychidae). Toxin Rev. 40: 962-970.
Al-Azzazy, M.M., Abdel-Ghani, S.B. and Alhewairini, S.S. 2019. Field evaluation of the efficacy of silver nanoparticles (AgNP) against mites associated with tomato plants in greenhouses. Pak. J. Agri. Sci, 56(1): 283-288.
Chi, H., 2022. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. Available at: http://140.120.197.173/Ecology/ Download/TWOSEX-MSChart.zip.
Dutta, P.K., Dutta, J. and Tripathi, V.S. 2004. Chitin and chitosan: chemistry, properties and applications. J. Sci. Ind. Res, 63: 20-31.
Ebadollahi, A., Valizadeh, B., Panahandeh, S., Mirhosseini, H., Zolfaghari, M. and Changbunjong, T. 2022. Nanoencapsulation of acetamiprid by sodium alginate and polyethylene glycol enhanced its insecticidal efficiency. Nanomater, 12(17): 2971.
Faal-mohammadali, H., Seraj, A.A. and Talebi-Jahromi, Kh. 2014. Effects of traditional insecticides on Habrobracon hebetor (Hymenoptera: Braconidae): bioassay and life-table assays. Arch. Phytopathol. Plant Prot, 47(9): 1089-1102.
Garzón, A., Medina, P., Amor, F., Viñuela, E. and Budia, F. 2015. Toxicity and sublethal effects of six insecticides to last instar larvae and adults of the biocontrol agents Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) and Adalia bipunctata (L.) (Coleoptera: Coccinellidae). Chemosphere, 132: 87-93.
Gill, H.K. and Garg, H. 2014. Pesticide: environmental impacts and management strategies. In: ‘‘Pesticides-Toxic Aspects’’, (Eds.): Larramendy, M.L. and Soloneski. S., IntechOpen. https://doi.org/10.5772/57399
Ghimire, M.N. and Phillips, T.W. 2010. Suitability of different lepidopteran host species for development of Bracon hebetor (Hymenoptera: Braconidae). Environm. Entomol, 39(2): 449-458.
Gonzalez, J.O.W., Stefanazzi, N., Murray, A.P., Ferrero, A.A. and Band, B.F. 2015. Novel nanoinsecticides based on essential oils to control the German cockroach. J. Pest Sci, 88: 393-404.
Gope, A., Chakraborty, G., Ghosh, S.M., Sau, S., Mondal, K., Biswas, A., Sarkar, S., Sarkar, P.K. and Roy, D. 2022. Toxicity and sublethal effects of fluxametamide on the key biological parameters and life history traits of diamondback moth Plutella xylostella (L.). Agron, 12(7): 1656.
Heibatian, A., Yarahmadi, F. and Lotfi Jalal Abadi, A. 2018. Field efficacy of biorational insecticides, azadirachtin and Bt, on Agrotis segetum (Lepidoptera: Noctuidae) and its carabid predators in the sugar beet fields. J. Crop Prot, 7(4): 365-373.
Karavas, E., Georgarakis, E. and Bikiaris, D. 2006. Application of PVP/HPMC miscible blends with enhanced mucoadhesive properties for adjusting drug release in predictable pulsatile chronotherapeutics. Eur. J. Pharm. Biopharm, 64(1): 115-126.
Kordestani, M., Mahdian, K., Baniameri, V. and Sheikhi Garjan, A. 2022a. Compatibility of Proteus®, matrine, and pyridalyl pesticides with Amblyseius swirskii Athias-Henriot: Sublethal studies and persistence effect. Sys. Appl. Acarol, 27(6): 1109-1119.
Kordestani, M., Mahdian, K., Baniameri, V. and Sheikhi Garjan, A. 2022b. Proteus, matrine, and pyridalyl toxicity and their sublethal effects on Orius laevigatus (Hemiptera: Anthocoridae). J. Econ. Entomol, 115(2): 573-581.
Kowah, J.A.H., Gao, R., Li, F., Guang, Ch., Jiang, M., Wu, X., Wang, L. and Liu, X. 2023. Matrine family derivatives: Synthesis, reactions procedures, mechanism, and application in medicinal, agricultural, and materials chemistry. Eur. J. Med. Chem. Rep, 7: 100098.
Liu, Z.L., Goh, S.H. and Ho, S.H. 2007. Screening of Chinese medicinal herbs for bioactivity against Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst). J. Stored Prod. Res, 43(3): 290-296.
Mahdavi, V. 2013. Residual toxicity of some pesticides on the larval ectoparasitoid, Habrabracon hebetor Say (Hymenoptera: Braconidae). J. Plant Prot. Res, 53(1): 27-31.
Manjunath, T.M. 2022. Integration of augmentative biocontrol with synthetic pesticides and other control methods for IPM – challenges and prospects. J. Biol. Control, 36(4): 179-186.
Mason, T.G., Wilking, J., Meleson, K., Chang, C. and Graves, S. 2006. Nanoemulsions: formation, structure, and physical properties. J. Phys. Condens. Matter, 18(41): 635-666.
Memarizadeh, N., Ghadamyari, M., Adeli, M. and Talebi, K. 2014. Preparation, characterization and efficiency of nanoencapsulated imidacloprid under laboratory conditions. Ecotoxicol. Environm. Saf, 107(4): 77-83.
Naskar, S., Sharma, S. and Kuotsu, K. 2019. Chitosan-based nano-particles: an overview of biomedical applications and its preparation. J. Drug Deliv. Sci. Technol, 49: 66-81.
Ochoa, V. and Maestroni, B. 2018. Pesticides in water, soil, and sediments. In: ‘‘Integrated AnalyticalApproaches for Pesticide Management’’, (Eds.): Maestroni, B. and Cannavan, A., Academic Press, pp. 133-147.
Pan, Z., Cui, B., Zeng, Zh., Feng, L., Liu, G., Cui, H. and Pan, H. 2015. Lambda-cyhalothrin nanosuspension prepared by the melt emulsification-high pressure homogenization method. J. Nanomater, 123496, 8 pages, https://doi.org/10.1155/2015/123496.
Pradhan, S. and Mailapalli D.R. 2020. Nanopesticides for pest control. In: ‘‘Sustainable Agriculture Reviews’’, (Ed.): Lichtfouse, E., Cham: Springer. pp. 43-74. https://doi.org/10.1007/978-3-030-33281-5_2.
Parsaeyan, E., Saber, M., Safavi, S.A., Poorjavad, N. and Biondi, A. 2020. Side effects of chlorantraniliprole, phosalone and spinosad on the egg parasitoid, Trichogramma brassicae. Ecotoxicol, 29: 1052-1061.
Preetha, S., Kannan, M., Lokesh, S. and Gowtham, V. 2018. Effect of neem oil based nanoemulsion on egg parasitoid, Trichogramma chilonis (Ishii) (Hymenoptera: Trichogrammatidae). J. Biol. Control,32( 2): 103-107.
Qu, M., Merzendorfer, H., Moussian, B. and Yang, Q. 2022. Bioinsecticides as future mainstream pest control agents: opportunities and challenges. Front. Agric. Sci. Eng, 9(1): 82-97.
Rafiee Dastjerdi, H., Hassanpour, M., Nouri Ganbalani, G., Golizade, A. and Sarmadi, S. 2012. Sublethal effects of some insecticides on life table parameter of pupae stage of Habrobracon hebetor Say (Hym: Braconidae). J. Crop Prot,1( 3): 221-228.
Ricupero, M., Biondi, A., Cincotta, F., Condurso, C., Palmeri, V., Verzera, A., Zappalà, L. and Campolo, O. 2022. Bioactivity and physico-chemistry of garlic essential oil nanoemulsion in tomato. Entomo. Gen, 42 (6):921-930. https://doi.org/10.1127/entomologia/2022/1553.
Sarmadi, S., Nouri-Gonbalani, G., Rafiee-Dastjerdi, H., Hassanpour, M. and Farshbaf-Pourabad, R. 2010. The effects of imidacloprid, indoxacarb and deltamethrin on some biological and demographic parameters of Habrobracon hebetor Say (Hymenoptera: Braconidae) in adult stage treatment. Mun. Ent. Zool, 5: 646-651.
SAS Institute. 2002. The SAS system for Windows. SAS Institute, Cary, NC.
Shao, C., Zhao, H. and Wang, P. 2022. Recent development in functional nanomaterials for sustainable and smart agricultural chemical technologies. Nano Converg, 9(1): 11.
Shifa, Zaki, FA., Mukhtar, M., Pandit, A., Murtaza, I., Nazir, N. and Hakeem, Kh.A. 2019. A critical study of reduced pesticide application rates of nano-deltamethrin in comparison to its conventional analogue against Trialeurodes vaporariorum. J. Entomol. Zool. Stud, 7: 969-974.
Sun, C., Yu, M., Zeng, Z., Francis, F., Cui, H. and Verheggen, F. 2020. Biocidal activity of polylactic acid-based nano-formulated abamectin on Acyrthosiphon pisum (Hemiptera: Aphididae) and the aphid predator Adalia bipunctata (Coleoptera: Coccinellidae). Plos One, 15(2): e0228817.
Taktak, N.E.M., Badawy, M.E.I., Awad, O.M., Abou El-Ela, N.E. and Abdallah, S.M. 2021. Enhanced mosquitocidal efficacy of pyrethroid insecticides by nanometric emulsion preparation towards Culex pipiens larvae with biochemical and molecular docking studies. J. Egypt. Public Health Assoc, 96(1): 21.
Worrall, E.A., Hamid, A., Mody, K.T., Mitter, N. and Pappu, H.R. 2018. Nanotechnology for plant disease management. Agron, 8(12): 285. https://doi.org/10.3390/agronomy8120285.
Wu, J., Yu, X., Wang, X., Tang, L. and Ali, S. 2019. Matrine enhances the pathogenicity of Beauveria brongniartii against Spodoptera litura (Lepidoptera: Noctuidae). Front. Microbiol, 10: 812.
Wu, S., Jiang, Q., Xia, Z., Sun, Z., Mu, Q., Huang, C., Song, F., Yin, M., Shen, J., Li, H. and Yan, S. 2024. Perfect cooperative pest control via nano-pesticide and natural predator: High predation selectivity and negligible toxicity toward predatory stinkbug, Chemosphere, 355: 141784.
Yan, S., Gu, N., Peng, M., Jiang, Q., Liu, E., Li, Z., Yin, M., Shen, J., Du, X. and Dong, M.A. 2022. Preparation method of nano-pesticide improves the selective toxicity toward natural enemies. Nanomater, 12(14): 2419.
Younes, S. and Rinaudo, M. 2015. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs, 13(3): 11331174.
Zhou, Y., Wu, J., Lin, S., He, J., Deng, Y., He, J. and Cheng, D. 2022. The synergistic effects of rosehip oil and matrine against Icerya aegyptiaca (Douglas) (Hemiptera: Coccoidea) and the underlying mechanisms. Pest Manag. Sci, 78(8): 3424-3432.