Ahloowalia, B., Maluszynski, M., & Nichterlein, K. (2004). Global impact of mutation-derived varieties. Euphytica, 135(2), 187-204.
Andrés, Z., Pérez-Hormaeche, J., Leidi, E. O., Schlücking, K., Steinhorst, L., McLachlan, D. H., Schumacher, K., Hetherington, A. M., Kudla, J., & Cubero, B. (2014). Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proceedings of the National Academy of Sciences, 111(17), E1806-E1814.
Bagheri F, Pirdashti H, Oladi M, Jenabiyan M. (2023). Evaluation of some of rice mutant lines (Oryza sativa L.) under salt stress through agronomic, physiological and enzymatic traits. Plant Process and Function, 12 (57): 13.
Barragán, V., Leidi, E. O., Andrés, Z., Rubio, L., De Luca, A., Fernández, J. A., Cubero, B., & Pardo, J. M. (2012). Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. The Plant Cell, 24(3), 1127-1142.
Bassil, E., & Blumwald, E. (2014). The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters. Current opinion in plant biology, 22, 1-6.
Bates, L. S., Waldren, R. P., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39(1), 205-207.
Chinnusamy, V., Jagendorf, A., & Zhu, J. K. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45(2), 437-448.
Craig Plett, D., & Møller, I. S. (2010). Na+ transport in glycophytic plants: what we know and would like to know. Plant, cell & environment, 33(4), 612-626.
Cuin, T. A., Bose, J., Stefano, G., Jha, D., Tester, M., Mancuso, S., & Shabala, S. (2011). Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. Plant, cell & environment, 34(6), 947-961.
Ding, L., & Zhu, J.-K. (1997). Reduced Na+ uptake in the NaCl-hypersensitive sos1 mutant of Arabidopsis thaliana. Plant physiology, 113(3), 795-799.
El Mahi, H., Pérez-Hormaeche, J., De Luca, A., Villalta, I., Espartero, J., Gámez-Arjona, F., Fernández, J. L., Bundó, M., Mendoza, I., & Mieulet, D. (2019). A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice. Plant physiology, 180(2), 1046-1065.
Fukuda, A., Nakamura, A., Hara, N., Toki, S., & Tanaka, Y. (2011). Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta, 233(1), 175-188.
Fukuda, A., Nakamura, A., & Tanaka, Y. (1999). Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1446(1-2), 149-155.
Ganie, S. A., Molla, K. A., Henry, R. J., Bhat, K., & Mondal, T. K. (2019). Advances in understanding salt tolerance in rice. Theoretical and Applied Genetics, 132(4), 851-870.
Gong, Q., Li, P., Ma, S., Indu Rupassara, S., & Bohnert, H. J. (2005). Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. The Plant Journal, 44(5), 826-839.
Hamada, A., Shono, M., Xia, T., Ohta, M., Hayashi, Y., Tanaka, A., & Hayakawa, T. (2001). Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant molecular biology, 46(1), 35-42.
Hoang, T. M. L., Tran, T. N., Nguyen, T. K. T., Williams, B., Wurm, P., Bellairs, S., & Mundree, S. (2016). Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy, 6(4), 54.
Huong, C. T., Anh, T. T. T., Tran, H.-D., Duong, V. X., Trung, N. T., Dang Khanh, T., & Dang Xuan, T. (2020). Assessing salinity tolerance in rice mutants by phenotypic evaluation alongside simple sequence repeat analysis. Agriculture, 10(6), 191.
Isaac, R. A., & Johnson Jr, W. C. (2019). Elemental determination by inductively coupled plasma atomic emission spectrometry. Handbook of reference methods for plant analysis,
Jenks, M.A.; Hasegawa, P.M.; Jain, S.M. (2007). Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops; Springer: New York, NY, USA.
Ji, H., Pardo, J. M., Batelli, G., Van Oosten, M. J., Bressan, R. A., & Li, X. (2013). The salt overly sensitive (SOS) pathway: established and emerging roles. Molecular plant, 6(2), 275-286.
Jiang, X., Leidi, E. O., & Pardo, J. M. (2010). How do vacuolar NHX exchangers function in plant salt tolerance? Plant signaling & behavior, 5(7), 792-795.
Koc, Y. E., Aycan, M., & Mitsui, T. (2024). Self-Defense Mechanism in Rice to Salinity: Proline. J, 7(1), 103-115.
Liu, P., Yang, G.-D., Li, H., Zheng, C.-C., & Wu, C.-A. (2010). Overexpression of NHX1s in transgenic Arabidopsis enhances photoprotection capacity in high salinity and drought conditions. Acta Physiologiae Plantarum, 32(1), 81-90.
Martínez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J.-K., Pardo, J. M., & Quintero, F. J. (2007). Conservation of the salt overly sensitive pathway in rice. Plant physiology, 143(2), 1001-1012.
Masoabi, M., Lloyd, J., Kossmann, J., & Van der Vyver, C. (2018). Ethyl methanesulfonate mutagenesis and in vitro polyethylene glycol selection for drought tolerance in sugarcane (Saccharum spp.). Sugar Tech, 20(1), 50-59.
Munns, R. (2005). Genes and salt tolerance: bringing them together. New phytologist, 167(3), 645-663.
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual review of plant biology, 59, 651.
Nakhoda, B., Leung, H., Mendioro, M. S., Mohammadi-nejad, G., & Ismail, A. M. (2012). Isolation, characterization, and field evaluation of rice (Oryza sativa L., Var. IR64) mutants with altered responses to salt stress. Field Crops Research, 127, 191-202.
Nahar, L., Aycan, M., Hanamata, S., Baslam, M., & Mitsui, T. (2022). Impact of single and combined salinity and high-temperature stresses on agro-physiological, biochemical, and transcriptional responses in rice and stress-release. Plants, 11(4), 501.
Nahar, L., Aycan, M., Lopes Hornai, E. M., Baslam, M., & Mitsui, T. (2023). Tolerance with High Yield Potential Is Provided by Lower Na+ Ion Accumulation and Higher Photosynthetic Activity in Tolerant YNU31-2-4 Rice Genotype under Salinity and Multiple Heat and Salinity Stress. Plants, 12(9), 1910.
Ohta, M., Hayashi, Y., Nakashima, A., Hamada, A., Tanaka, A., Nakamura, T., & Hayakawa, T. (2002). Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS letters, 532(3), 279-282.
Peng, Z., He, S., Sun, J., Pan, Z., Gong, W., Lu, Y., & Du, X. (2016). Na+ compartmentalization related to salinity stress tolerance in upland cotton (Gossypium hirsutum) seedlings. Scientific Reports, 6(1), 34548.
Pental, D. (2019). When scientists turn against science. Current Science, 117(6), 932-939.
Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic acids research, 30(9), e36-e36.
Pitman, M. G., & Läuchli, A. (2002). Global impact of salinity and agricultural ecosystems. In Salinity: environment-plants-molecules (pp. 3-20). Springer.
Rasel, M., Tahjib-Ul-Arif, M., Hossain, M. A., Hassan, L., Farzana, S., & Brestic, M. (2021). Screening of salt-tolerant rice landraces by seedling stage phenotyping and dissecting biochemical determinants of tolerance mechanism. Journal of Plant Growth Regulation, 40(5), 1853-1868.
Roy, S. J., Negrão, S., & Tester, M. (2014). Salt resistant crop plants. Current opinion in Biotechnology, 26, 115-124.
Sánchez-Barrena, M. J., Martínez-Ripoll, M., Zhu, J.-K., & Albert, A. (2005). The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. Journal of molecular biology, 345(5), 1253-1264.
Shabala, S., & Munns, R. (2017). Salinity stress: physiological constraints and adaptive mechanisms. In Plant stress physiology (pp. 24-63). Cabi Wallingford UK.
Shabala, S., Shabala, S., Cuin, T. A., Pang, J., Percey, W., Chen, Z., Conn, S., Eing, C., & Wegner, L. H. (2010). Xylem ionic relations and salinity tolerance in barley. The Plant Journal, 61(5), 839-853.
Shahzad, B., Yun, P., Rasouli, F., Shabala, L., Zhou, M., Venkataraman, G., Chen, Z.-H., & Shabala, S. (2022). Root K+ Homeostasis and Signalling as a Determinant of Salinity Stress Tolerance in Cultivated and Wild Rice Species. Environmental and Experimental Botany, 104944.
Shi, H., Ishitani, M., Kim, C., & Zhu, J.-K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences, 97(12), 6896-6901.
Singh, R. K., Redoña, E., & Refuerzo, L. (2010). Varietal improvement for abiotic stress tolerance in crop plants: special reference to salinity in rice. Abiotic stress adaptation in plants: physiological, molecular and genomic foundation, 387-415.
Singh, V., Singh, A. P., Bhadoria, J., Giri, J., Singh, J., TV, V., & Sharma, P. C. (2018). Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage. Protoplasma, 255, 1667-1681.
Sun, M., Yan, G., Wang, A., Zhu, G., Tang, H., He, C., Ren, Z., Liu, K., Zhang, G., & Shi, W. (2017). Research progress on the breeding of salt-tolerant rice varieties. Barley Cereals Sci, 34, 1-9.
Tandon, H. (1995). Estimation of sodium and potassium. Methods of Analysis of Soils, Plants, Water and Fertilisers, 62-63.
Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of botany, 91(5), 503-527.
Wang, C., Zhang, Y., Zhao, L., Lu, K., Zhu, Z., Chen, T., Zhao, Q., Yao, S., Zhou, L., & Zhao, C. (2019). Research status, problems and suggestions on salt-alkali tolerant rice. China Rice, 25(1), 1-6.
Xia, T., Apse, M. P., Aharon, G. S., & Blumwald, E. (2002). Identification and characterization of a NaCl‐inducible vacuolar Na+/H+ antiporter in Beta vulgaris. Physiologia Plantarum, 116(2), 206-212.
Xiao, B.-Z., Chen, X., Xiang, C.-B., Tang, N., Zhang, Q.-F., & Xiong, L.-Z. (2009). Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Molecular plant, 2(1), 73-83.
Xue, Z.-Y., Zhi, D.-Y., Xue, G.-P., Zhang, H., Zhao, Y.-X., & Xia, G.-M. (2004). Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant science, 167(4), 849-859.
Yang A, Dai X, Zhang W-H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot. 2012;63(7):2541–56.
Yoshida, S., & Coronel, V. (1976). Nitrogen nutrition, leaf resistance, and leaf photosynthetic rate of the rice plant. Soil Science and Plant Nutrition, 22(2), 207-211.
Yunita, R., Dewi, I., Lestari, E., Mariska, I., & Purnamaningsih, R. (2020). Salinity tolerance level of rice mutants (M3) derived from Ciherang and Inpari 13 varieties at seedling phase. IOP Conference Series: Earth and Environmental Science,
Zhang, A., Liu, Y., Wang, F., Li, T., Chen, Z., Kong, D., Bi, J., Zhang, F., Luo, X., & Wang, J. (2019). Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular breeding, 39(3), 1-10.
Zhang, G.-H., Su, Q., An, L.-J., & Wu, S. (2008). Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiology and Biochemistry, 46(2), 117-126.
Zhang, H.-X., & Blumwald, E. (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature biotechnology, 19(8), 765-768.
Zhang, X., Yang, F., Ma, H., & Li, J. (2022). Evaluation of the Saline–Alkaline Tolerance of Rice (Oryza sativa L.) Mutants Induced by Heavy-Ion Beam Mutagenesis. Biology, 11(1), 126.
Zhang, Y., Fang, J., Wu, X., & Dong, L. (2018). Na+/K+ balance and transport regulatory mechanisms in weedy and cultivated rice (Oryza sativa L.) under salt stress. BMC plant biology, 18(1), 1-14.
Zhu, J.-K. (2001). Plant salt tolerance. Trends in plant science, 6(2), 66-71.
Zhu, J.-K. (2003). Regulation of ion homeostasis under salt stress. Current opinion in plant biology, 6(5), 441-445.