Agro-Morphological Characteristics of Selected Sweet Potato (Ipomoea batatas L.) Varieties from Organic Farming and Their Genetic Background

Authors
1 Naklo Biotechnical Center, Strahinj 99, Naklo, Slovenia.
2 Department of Crop Science, Agricultural Institute of Slovenia, Hacquetova Ulica 17, Ljubljana, Slovenia.
Abstract
Sweet potato is one of the most important root crops worldwide. This study aimed to compare agro-morphological characteristics of four sweet potato varieties (Martina, Janja, Lučka, Purple Speclet) from organic farming with additional information about their genetic background. A total of 26 agro-morphological traits were evaluated during vegetation. Pre-grown seedlings were planted in organic fields during the 2021 growing season using the soil ridge cultivation method. The study showed significant differences between varieties in quantitative (except for the extent and intensity of anthocyanin colouration on abaxial veins) and qualitative traits (except for the number and length of primary shoots and internode diameter). The varieties Lučka and Martina proved to be significantly higher yielding compared to the other two varieties. The genetic background of the varieties was evaluated on 8 Simple Sequence Repeat (SSR) loci using allele polymorphisms with a total number of 34 different alleles and an average polymorphic information content of 0.60. The favourable informativeness of the selected markers was confirmed by the global genetic diversity of 0.68. The assignment of each genotype to two genetic groups agreed well with the varietal distribution in the phylogenetic tree and the results of the analysis of the genetic structure (Martina/Janja and Lučka/Purple Speclet). The present study contributes to a better knowledge of the considered sweet potato varieties and their agro-morphological and genetic diversity.

Keywords

Subjects


1. Amagloh, F.C., Yada, B., Tumuhimbise, G.A., Amagloh, F.K., and Kaaya, A.N. 2021. The potential of sweetpotato as a functional food in sub-Saharan Africa and its implications for health: a review. Molecules 26: 2971-2992.
2. Andrade, E.K.V.D., Andrade, V.C.D., Laia, M.L.D., Fernandes, J.S.C., Oliveira, A.J.M., and Azevedo, A.M. 2017. Genetic dissimilarity among sweet potato genotypes using morphological and molecular descriptors. Acta. Sci. Agron. 39: 447-455.
3. Burton, G.W. 1951. Quantitative inheritance in Pearl millet (P. glaucum). Agron. J. 43: 409-417.
4. Buteler, M.I., Jarret, R.L., and LaBonte, D.R. 1999. Sequence characterization of microsatellites in diploid and polyploid Ipomea. Theor. Appl. Genet. 99: 123–132.
5. Cartabiano-Leite, C.E., Porcu, O.M., and de Casas, A.F. 2020. Sweet potato (Ipomoea batatas L. Lam) nutritional potential and social relevance. Int. J. Eng. Res. Appl. 10: 23-40.
6. Dinu, M., Soare, R., Băbeanu, C., Hoza, G., and Sima, R. 2021. Nutraceutical value and production of the sweet potato (Ipomoea batatas L.) cultivated in South-West of Romania. J. Cent. Eur. Agr. 22: 285-294.
7. UPOV. 2010. Sweet potato: Ipomoea batatas (L.) Lam. Guidelines for the conduct of tests for distinctness, uniformity and stability. International :union: for the Protection of New Varieties of Plants (UPOV), Geneva: 1-27.
8. Escobar-Puentes, A.A., Palomo, I., Rodrígues, L., Fuentes, E., Villegas-Ochoa, M.A., González-Aguilar, G.A., and Wall-Medrano, A. 2022. Sweet potato (Ipomoea batatas L.) phenotypes: from agroindustry to health effects. Foods 11: 1058-1076.
9. Evanno, G., Regnaut, S., and Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611–2620.
10. FAOSTAT. 2023. Food and agricultural data, Crops and livestock products, Food and Agriculture Organisation of the United States.
11. Ferreira, C.C., Figueira, J.H.M., Soares, D.O.P., Lobato, C.A.N., and Castro, A.P.D. 2022. Morphological characteristics of varieties of sweet potato, Cenoura, Margarita, Rainha and Roxa, cultivated in Amazonas, Brazil. J. Agric. Sci. 14: 170-176.
12. Gobena, T.L., Asemie, M.M., and Firisa, T.B. 2022. Evaluation of released sweet potato [Ipomoea batatas (L.) Lam] varieties for yield and yield-related attributes in Semen-Bench district of Bench-Sheko-Zone, South-Western Ethiopia. Heliyon 8: e10950.
13. Goudet, J. 2005. Hierfstat, a package for R to compute and test hierarchical F‐statistics. Mol. Ecol. Notes 5: 184-186.
14. Guevara, M.R., Hartmann, D., and Mendoza, M. 2016. Diverse: an R package to analyze diversity in complex systems. The R Journal 8: 60-78.
15. Hayati, M., and Anhar, A. 2020. Morphological characteristics and yields of several sweet potato (Ipomoea batatas L.) tubers. IOP Conference Series: Earth and Env. Sci. 425: 012055.
16. Ilodibia, C.V., Arubalueze, C.U., Udearoh, S.N., Okafor, B.I., and Agbanusi, C. 2018. Assessment of morphological and nutritional attributes of two varieties of Ipomoea batatas (L.) utilized in Nigeria. Arch. Agri. Env. Sci. J. 3: 394-398.
17. IBPGR. 1991. Descriptors for sweet potatoes. International Board for Plant Genetic Resources, Rome, Italy: 1-52.
18. Johnson, H.W., Robinson, H.F., and Comstock, R.E. 1955. Estimates of genetic and environmental variability in soybean. Agron. J. 47: 314-318.
19. Kassambara, A. 2023. Pipe-friendly framework for basic statistical tests [R package rstatix version 0.7. 2]. Comprehensive R Archive Network (CRAN).
20. Kassambara, A., and Mundt, F. 2020. Factoextra: extract and visualize the results of multivariate data analyses. R package version 1(5).
21. Koussao, S., Gracen, V., Asante, I., Danquah, E.Y., Ouedraogo, J.T., Baptiste, T.J., and Vianney, T.M. 2014. Diversity analysis of sweet potato (Ipomoea batatas [L.] Lam) germplasm from Burkina Faso using morphological and simple sequence repeats markers. Afr. J. Biotechnol. 13: 729-742.
22. Langella, O. 2002. Populations 1.2.31. Population genetic software (individuals or populations distances, phylogenetic trees). Free Softwarw Fundation Inc.: Boston, MA, USA.
23. Lê, S., Josse, J., and Husson, F. 2008. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25: 1-18.
24. Leite, C.E.C., Souza, B.D.K.F., Manifio, C.E., Wamser, G.H., Alves, D.P., and de Francisco, A. 2022. Sweet potato new varieties screening based on morphology, pulp color, proximal composition, and total dietary fiber content via factor analysis and principal component analysis. Front. Plant. Sci. 13: 1-18.
25. Lush, J.L. 1940. Intra-sire correlation and regression of offspring on dams as a method of estimating heritability of characters. Proc. Am. Soc. Anim. Prod. 33: 293-301.
26. Maquia, I., Muocha, I., Naico, A., Martins, N., Gouveia, M., Andrade, I., and Ribeiro, A.I. 2013. Molecular, morphological and agronomic characterization of the sweet potato (Ipomoea batatas L.) germplasm collection from Mozambique: genotype selection for drought prone regions. S. Afr. J. Bot. 88: 142–151.
27. Mohanraj, R., and Sivasankar, S. 2014. Sweet potato (Ipomoea batatas [L.] Lam) – A valuable medicinal food: A review. J. Med. Food 17: 733-741.
28. Mukhopadhyay, S.K., Chattopadhyay, A., Chakraborty, I., and Bhattacharya, I. 2011. Crops that feed the world 5. Sweetpotato. Sweetpotatoes for income and food security. Food Secur. 3: 283-305.
29. Nei, M. 1972. Genetic distance between populations. The Am. Nat. 106: 283-292.
30. Nitesh, S.D., Parashuram, P., and Shilpa, P. 2021. TraitStats: statistical data analysis for randomized block design experiments. R package version 1.0.1.
31. Ochieng, L.A. 2019. Agro-morphological characterization of sweet potato genotypes grown in different ecological zones in Kenya. J. Hort. Plant Res. 5: 1-12.
32. Park, S. 2001. Microsatellite Toolkit. Department of Genetics: Trinity College, Dublin, Ireland.
33. Patil, I. 2021. Visualizations with statistical details: The'ggstatsplot' approach. J. Open Sour. Softw. 6: p3167.
34. Peakall, R.O.D., and Smouse, P.E. 2006. Genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6: 288-295.
35. Pipan, B., Žnidaršič, D., Kunstelj, N., and Meglič, V. 2017a. Genetic evaluation of sweetpotato accessions introduced to the central European area. J. Agric. Sci. Technol. 19: 1139-1150.
36. Pipan, B., Žnidarčič, D., and Meglič, V. 2017b. Evaluation of genetic diversity of sweet potato [Ipomoea batatas (L.) Lam.] on different ploidy levels applying two capillary platforms. J. Hortic. Sci. Biotechnol. 92: 192-198.
37. Prakash, P., Kishore, P., Jaganathan, D., Immanual, S., and Sivakumar, P.S. 2018. The status, performance and impact of sweet potato cultivation on farming communities of Odisha, India. 30th International Conference of Agricultural Economists, Vancuver, Canada: 1-13.
38. R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
39. Reddy, R., Soibam, H., Ayam, V.S., Panja, P., and Mitra, S. 2018. Morphological characterization of sweet potato cultivars during growth, development and harvesting. Indian J. Agr. Res. 52: 46-50.
40. Roullier, C., Duputié, A., Wennekes, P., Benoit, L., Fernández Bringas, V.M., Rossel, G., Tay, D., McKey, D., and Lebot, V. 2013. Disentangling the origins of cultivated sweet potato (Ipomoea batatas (L.) Lam.). PLoS One 8: p.e62707.
41. Shannon, C.E., and Weaver, W. 1949. The mathematical theory of communication. Urbana, IL: University of Illinois Press, 11: 11-20.
42. Taiyun, W., and Viliam, S. 2017. R package “corrplot”: Visualization of a correlation matrix (Version 0.84). Statistician 56: e24.
43. Ukom, A.N., Ojimelukwe, P.C., and Okpara, D.A. 2009. Nutrient composition of selected sweet potato [Ipomea batatas (L) Lam] varieties as influenced by different levels of nitrogen fertilizer application. Pakistan J. Nutr. 8: 1791-1795.
44. Vazhacharickal, P.J., and Augustine, A. 2017. Morphological characterization of sweet potato (Ipomoea batatas Lam.) varieties in Kerala: an overview. Amazon: 1-58.
45. Veasey, E.A., Borges, A., Silva Rosa, M., Queiroz-Sila, J.R., de Andrade Bressan, E., and Peroni, N. 2008. Genetic diversity in Brazilian sweet potato (Ipomoea batats (L.) Lam., Solanaes, Convolvulaceae) landraces assessed with microsatellite markers. Genet. Mol. Biol. 31: 725-733.
46. Villanueva, R.A.M., and Chen, Z.J. 2019. ggplot2: elegant graphics for data analysis (2nd ed.). Measurement 173: 160-167.
47. Zhang, D., Cervantes, J., Huamán, Z., Carey, E., and Ghislain, M. 2000. Assessing genetic diversity of sweet potato (Ipomoea batatas (L.) Lam.) cultivars from tropical America using AFLP. Genet. Resour. Crop. Evol. 47: 659-665.