1. Agbodzavu, M. K., Osiemo-Lagat, Z., Gikungu, M., Ekesi, S. and Fiaboe, K. K. M. 2020. Temperature-dependent development, survival and reproduction of Apanteles hemara (Nixon) (Hymenoptera: Braconidae) on Spoladea recurvalis (F.) (Lepidoptera: Crambidae). Bull. Entomol. Res., 110(5): 577-587.
2. Aghdam, H. R. and Nemati, Z. 2020. Modeling of the effect of temperature on developmental rate of common green lacewing, Chrysoperla carnea (Steph.) (Neuroptera: Chrysopidae). Egypt. J. Biol. Pest. Control, 30: 1-10.
3. Aghdam, H. R., Fathipour, Y., Radjabi, G. and Rezapanah, M. 2009. Temperature-dependent development and temperature thresholds of codling moth (Lepidoptera: Tortricidae) in Iran. Environ. Entomol., 38(3): 885-895.
4. Akaike, H. 1974. A new look at the statistical model identification. IEEE. Trans. Autom. Control., 19: 716-723.
5. Allahyari, H. 2005. Decision making with degree-day in control program of Colorado potato beetle. Ph.D. University of Tehran, Tehran, Iran.
6. Amjad Bashir, M., Batool, M., Khan, H., Shahid Nisar, M., Farooq, H., Hashem, M., Alamri, S., A. El-Zohri, M., Alajmi, R.A., Tahir, M. and Jawad, R. 2022. Effect of temperature and humdity on population dynamics of insects’ pest complex of cotton crop. Plos One., 17(5): 1-14.
7. Analytis, S. 1977. Uber die relation zwischen biologischer entwicklung und temperatur bei phytopathogenen Pilzen. J. Phytopathol., 90: 64–76.
8. Analytis, S. 1980. Obtaining of sub-models for modeling the entire life cycle of a pathogen. J. Plant Dis. Protec., 87: 371–382.
9. Baek, S., Son, Y. and Park, Y. L. 2014. Temperature-dependent development and survival of Podisus maculiventris (Hemiptera: Pentatomidae): implications for mass rearing and biological control. J. Pest. Sci., 87: 331-340.
10. Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K., Butterfield, J., Buse, A., Coulson, J. C., Farrar, J., Good, J. E. G., Harrington, R., Hartley, S., Jones, T. H., Lindroth, R. L., Press, M. C., Symrnioudis, I., Watt, A. D. and Whittaker, J. B. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change. Biol., 8: 1–16.
11. Benelli, M., Marchetti, E. and Dindo, M. L. 2017. Effects of storage at suboptimal temperatures on the in vitro-reared parasitoid Exorista larvarum (Diptera: Tachinidae). J. Econ. Entomol., 110: 1476-1482.
12. Benelli, M., Tóth, F. and Dindo, M. L. 2018. Low‐temperature storage of Exorista larvarum puparia as a tool for assisting parasitoid production. Entomol. Exp. Appl., 166: 914-924.
13. Briere, J. F., Pracros, P., Le Roux, A. Y. and Pierre, J. S. 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol., 28: 22–29.
14. Campbell, A., Frazer, B. D., Gilbert, N., Gutierrez, A. P. and Mackauer, M. 1974. Temperature requirement of some aphids and their parasites. J. Appl. Ecol., 11: 431-438.
15. Campadelli, G. 1987. Effetti della bassa temperatura sulla coppia ospite-parassita Galleria mellonella L., Pseudogonia rufifrons Wied. Boll. Ist. Entomol. "Guido Grandi" Stud. Bologna., 41: 29-49.
16. Campadelli, G. 1988. Galleria mellonella L. quale ospite di sostituzione per i parassitoidi. Boll. Ist. Entomol. Univ. Bologna., 42: 47-65.
17. Cerretti, P. and Tschorsnig, H. P. 2010. Annotated host catalogue for the Tachinidae (Diptera) of Italy. Stuttg. Beitr. Naturkd. A., 3: 305–340.
18. Davidson, J. 1942. On the speed of development of insect eggs at constant temperatures. Aust. J. Exp. Biol. Med. Sci., 20: 233–239.
19. Davidson, J. 1944. On the relationship between temperature and rate of development of insects at constant temperatures. J. Anim. Ecol., 13: 26–38.
20. Delobel, B. and Laviolette, P. 1969. Elevage de Phryxe caudata Rond. (Larvaevoridae) parasite de Thaumetopoea pityocampa Schiff. sur un hôte de remplacement Galleria mellonella. C. R. Acad. Sci., 268: 2436–2438.
21. Depalo, L., Marchetti, E., Baronio, P., Martini, A. and Dindo, M. L. 2010. Location, acceptance and suitability of Spodoptera littoralis and Galleria mellonella as hosts for the parasitoid Exorista larvarum. Bull. Insectology., 63(1): 65-69.
22. Dindo, M. L. and Nakamura, S. 2018. Oviposition strategies of tachinid parasitoids: two Exorista species as case studies. Int. J. Insect. Sci., 10: 1-6.
23. Dindo, M. L., Farneti, R., Scapolatempo, M. and Gardenghi, G. 1999. In Vitro Rearing of the Parasitoid Exorista larvarum (L.) (Diptera: Tachinidae) on Meat Homogenate-based Diets. Biol. Control, 16: 258-266.
24. Dindo, M. L., Marchetti, E., Galvagni, G. and Baronio, P. 2003. Rearing of Exorista larvarum (Diptera Tachinidae): simplification of the in vitro technique. Bull. Insectol., 56: 253-258.
25. Dindo, M. L., Marchetti, E. and Baronio, P. 2007. In vitro rearing of the parasitoid Exorista larvarum (Diptera: Tachinidae) from eggs laid out of host. J. Econ. Entomol., 100(1): 26-30.
26. Dindo, M. L., Rezaei, M. and De Clercq, P. 2019. Improvements in the rearing of the tachinid parasitoid Exorista larvarum (Diptera: Tachinidae): influence of adult food on female longevity and reproduction capacity. J. Insect Sci., 19(2): 6.
27. Dindo, M. L., Modesto, M., Rossi, C., Di Vito, M., Burgio, G., Barbanti, L. and Mattarelli, P. 2021. Monarda fistulosa hydrolate as antimicrobial agent in artificial media for the in vitro rearing of the tachinid parasitoid Exorista larvarum. Entomol. Exp. Appl., 169(1): 79-89.
28. Farazmand, A., Amir-Maafi, M. and Atlihan, R. 2020. Temperature-dependent development of Amblyseius swirskii (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae). Syst. Appl. Acarol., 25(3): 538-547.
29. Foerster, L. A. and Doetzer, A. K. 2002. Host instar preference of Peleteria robusta (Wiedman) (Diptera: Tachinidae) and development in relation to temperature. Neotrop. Entomol., 31: 405-409.
30. Ghahari, H. 2017. Study of species diversity of parasitoids in the rice fields of northern Iran with emphasis on rice stem borer parasitoids. J. Anim. Ecol., 9(4): 289–298. [In Persian]
31. Gilbert, N. and Raworth, D. A. 1996. Insects and temperature—a general theory. Can. Entomol., 128: 1-13.
32. Gorji, M. K., Kamali, K., Fathipour, Y. and Aghdam, H. R. 2008. Temperature-dependent development of Phytoseius plumifer (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae). Syst. Appl. Acarol., 13(3): 172-181.
33. Grenier, S. 1988. Applied biological control with Tachinid flies (Diptera, Tachinidae): a review. Anz. Schad. Pflanz. Umwelts., 61: 49–56.
34. Haghani, M., Fathipour, Y., Talebi, A. A. and Baniameri, V. 2007a. Thermal requirement and development of Liriomyza sativae (Diptera: Agromyzidae) on cucumber. J. Econ. Entomol., 100: 350-356.
35. Haghani, M., Fathipour, Y., Talebi, A. A. and Baniameri, V. 2007b. Temperature-dependent development of Diglyphus isaea (Hymenoptera: Eulophidae) on Liriomyza sativae (Diptera: Agromyzidae) on cucumber. J. Pest. Sci., 80: 71-77.
36. Haghani, M., Fathipour, Y., Talebi, A. A. and Baniameri, V. 2009. Estimating development rate and thermal requirements of Hemiptarsenus zilahisebessi (Hymenoptera: Eulophidae) parasitoid of Liriomyza sativae (Diptera: Agromyzidae) using linear and nonlinear models. Pol. J. Entomol., 78: 3-14.
37. Harcourt, D. and Yee, J. 1982. Polynomial algorithm for predicting the duration of insect life stages. Environ. Entomol., 11: 581–584.
38. Hilbert, D. and Logan, J. 1983. Empirical model of nymphal development for the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). Environ. Entomol., 12: 1–5.
39. Hoelmer, K. A. and Kirk, A. A. 2005. Selecting arthropod biological control agents against arthropod pests: can the science be improved to decrease the risk of releasing ineffective agents?. Biol. Control., 34: 255-264.
40. Honek, A. 1999. Constraints on thermal requirements for insect development. J. Entomol. Sci., 2: 615-621.
41. Ikemoto, T. 2005. Intrinsic optimum temperature for development of insects and mites. Environ. Entomol., 34: 1377–1387.
42. Ikemoto, T. 2008. Tropical malaria does not mean hot environments. J. Med. Entomol., 45: 963–969.
43. Ikemoto, T. and Takai, K. 2000. A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environ. Entomol., 29: 671-682.
44. Iranipour, S., Bonab, Z. N. and Michaud, J. P. 2010. Thermal requirements of Trissolcus grandis (Hymenoptera: Scelionidae), an egg parasitoid of sunn pest. Eur. J. Entomol., 107: 47-53.
45. Jafari, M., Goldasteh, S., Aghdam, H. R., Zamani, A. A., Soleyman-Nejadian, E. and Schausberger, P. 2022. Modeling thermal developmental trajectories and thermal requirements of the ladybird Stethorus gilvifrons. Insects, 14(1): 11.
46. Janisch, E. 1932. The influence of temperature on the life-history of insects. Roy. Entomol. Soc. London., 80: 137–168.
47. Johnson, C. A., Coutinho, R. M., Berlin, E., Dolphin, K. E., Heyer, J., Kim, B., Leung, A., Sabellon, J. L. and Amarasekare, P. 2016. Effects of temperature and resource variation on insect population dynamics: the bordered plant bug as a case study. Funct. Ecol., 30(7): 1122-1131.
48. Kang, L., Chen, B., Wei, J. N. and Liu, T. X. 2009. Roles of thermal adaptation and chemical ecology in Liriomyza distribution and control. Annu. Rev. Entomol., 54(1): 127-145.
49. Karami, A., Talebi, A. A., Gilasian, E., Fathipour, Y. and Mehrabadi, M. 2023. Native parasitoids of the fall webworm, Hyphantria cunea (Lepidoptera: Erebidae), an invasive alien pest in northern Iran. J. Insect. Biodivers. Syst., 9: 81-101.
50. Karimpour, Y., Fathipour, Y., Talebi, A. A. and Moharramipour, S. 2005. Biology of leafy spurge defoliator moth Simyra dentinosa (Lep., Noctuidae) and determination of its parasitoids in Orumieh, Iran. Iranian. J. Agric. Sci., 36: 475–484. [in Persian with Enligh abstract]
51. Kontodimas, D. C., Eliopoulos, P. A., Stathas, G. J. and Economou, L. P. 2004. Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models using specific criteria. Environ. Entomol., 33: 1-11.
52. Kvalseth, T. O. 1985. Cautionary note about R 2. Am. Stat., 39: 279-285.
53. Lactin, D. J., Holliday, N. J., Johnson, D. L. and Craigen, R. 1995. Improved rate of temperature–dependent development by arthropods. Environ. Entomol., 24: 68–75.
54. Larranaga, P. and Bielza, C. 2014. Akaike Information Criterion. In: “Dictionary of Bioinformatics and Computational Biology”, (Eds.): Hancock, J. M. and Zvelebil, M. J. John Wiley & Sons Ltd., 636 p.
55. Liu, C. Y., Chen, K. W. and Zeng, L. 2012. Effects of temperature on the development and fecundity of Diachasmimorpha longicaudata (Ashmead). Ying Yong Sheng tai xue bao= J. Appl. Ecol., 23: 3051-3056.
56. Logan, J., Wollkind, D., Hoyt, S. and Tanigoshi, L. 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol., 5: 1133–1140.
57. Malekera, M. J., Acharya, R., Mostafiz, M. M., Hwang, H. S., Bhusal, N. and Lee, K. Y. 2022. Temperature-dependent development models describing the effects of temperature on the development of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Insects., 13(12): 1084.
58. Martini, A., Di Vitantonio, C. and Dindo, M. L. 2019. Acceptance and suitability of the box tree moth Cydalima perspectalis as host for the tachinid parasitoid Exorista larvarum. Bull. Insectology., 72(1): 150-160.
59. Meirelles, R. N., Redaelli, L. R. and Ourique, C. B. 2015. Thermal requirements and annual number of generations of Diachasmimorpha longicaudata (Hymenoptera: Braconidae) reared in the South American fruit fly and the Mediterranean fruit fly (Diptera: Tephritidae). Fla. Entomol., 98: 1223-1226.
60. Mellini, E. and Coulibaly, A. K. 1991. Un decennio di sperimentazione sul sistema ospite— parassita Galleria mellonella L., Pseudogonia rufifrons Wied.: sintesi dei risultati. Boll. Ist. Entomol. "Guido Grandi" Univ. Bologna., 45: 191–249.
61. Mellini, E., Campadelli, G. and Dindo, M. L. 1993. Artificial culture of the parasitoid Exorista larvarum (L.) (Dipt. Tachinidae) on bovine serum-based diets. Boll. Ist. Ent. "Guido Grandi" Univ. Studi Bologna., 47: 223-231.
62. Milenovic, M., Ripamonti, M., Eickermann, M., Rapisarda, C. and Junk, J. 2023. Changes in longevity, parasitization rate and development time of the whitefly parasitoid Encarsia formosa under future climate conditions. Biol. Control, 186 (1): 105354.
63. Mirhosseini, M. A., Fathipour, Y. and Reddy, G. V. 2017. Arthropod development’s response to temperature: a review and new software for modeling. Ann. Entomol. Soc. Am., 110: 507-520.
64. Mirhosseini, M. A., Fathipour, Y., Soufbaf, M. and Reddy, G. V. 2018. Thermal requirements and development response to constant temperatures by Nesidiocoris tenuis (Hemiptera: Miridae), and implications for biological control. Environ. Entomol., 47: 467-476.
65. Moallem, Z., Karimi-Malati, A., Sahragard, A. and Zibaee, A. 2017. Modeling temperature-dependent development of Glyphodes pyloalis (Lepidoptera: Pyralidae). J. insect sci., 17(1): 37.
66. Modarres Awal, M. 1994. List of Agricultural Pests and their Natural Enemies in Iran. Ferdowsi University of Mashhad Press. 364 PP.
67. Mojib-Haghghadam, Z., Sendi, J. J., Zibaee, A., Mohaghegh, J. and Karimi-Malati, A. 2019. Modeling temperature-dependent development and demography of Adalia decempunctata L. (Coleoptera: Coccinellidae) reared on Aphis gossypii (Glover) (Homoptera: Aphididae). J. Plant. Prot. Res., 59: 229-243.
68. Moradi, F., Rahimi, A., Sadeghi, A., Fathipour, Y. and Maroufpoor, M. 2023. Modeling linear and nonlinear relationship between temperature and development rate of Amblyseuis swirskii (Acari: Phytoseiidae). Syst. Appl. Acarol., 28(6): 1121-1136.
69. Paes, J. P., Lima, V. L., Pratissoli, D., Carvalho, J. R., Pirovani, V. D. and Bueno, R. C. 2018. Thermal requirements, development and number of generations of Duponchelia fovealis (Zeller) (Lepidoptera: Crambidae). An. Acad. Bras. Ciênc., 90: 2447-2457.
70. Pakyari, H., Fathipour, Y. and Enkegaard, A. 2011. Estimating development and temperature thresholds of Scolothrips longicornis (Thysanoptera: Thripidae) on eggs of two-spotted spider mite using linear and nonlinear models. J. Pest. Sci., 84: 153-163.
71. Park, C. G., Seo, B. Y. and Choi, B. R. 2016. The temperature-dependent development of the parasitoid fly, Exorista Japonica (Townsend) (Diptera: Tachinidae). Korean. J. Appl. Entomol., 55: 445-452.
72. Perdikis, D. C. and Lykouressis, D. P. 2002. Thermal requirements for development of the polyphagous predator Macrolophus pygmaeus (Hemiptera: Miridae). Environ. Entomol., 31: 661-667.
73. Pilkington, L. J. and Hoddle, M. S. 2006. Use of life table statistics and degree-day values to predict the invasion success of Gonatocerus ashmeadi (Hymenoptera: Mymaridae), an egg parasitoid of Homalodisca coagulata (Hemiptera: Cicadellidae), in California. Biol. Control., 37: 276-283.
74. Pradhan, S. 1945. Insect population studies. II. Rate of insect development under variable temperature of the field. Proc. Nat. Inst. Sci. India., 11: 74–80.
75. Ratkowsky, D., Lowry, R., McMeekin, T., Stokes, A. and Chandler, R. 1983. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol., 154: 1222–1226.
76. Rochat, J. and Gutierrez, A. P. 2001. Weather-mediated regulation of olive scale by two parasitoids. J. Anim. Ecol., 70: 476–490.
77. Roy, M., Brodeur, J. and Cloutier, C. 2002. Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acarina: Tetranychidae). Environ. Entomol., 31: 177-187.
78. Saeidi, K. 2011. Preliminary studies on natural enemies of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae) in Yasooj, Iran. Int. Res. J. Agric. Sci. Soil. Sci., 1: 151–156.
79. Sampaio, F., Krechemer, F. S. and Marchioro, C. A. 2021. Temperature‐dependent development models describing the effects of temperature on the development of Spodoptera eridania. Pest Manag. Sci., 77(2): 919-929.
80. Schoolfield, R., Sharpe, P. and Magnuson, C. 1981. Non-linear regression of biological temperature-dependent rate models based on absolute reactionrate theory. J. Theor. Biol., 88: 719–731.
81. Shamakhi, L., Zibaee, A., Karimi-Malati, A. and Hoda, H. 2018. A laboratory study on the modeling of temperature-dependent development and antioxidant system of Chilo suppressalis (Lepidoptera: Crambidae). J. Insect Sci., 18(2): 1-11.
82. Sharpe, P. J. and DeMichele, D. W. 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol., 64: 649–670.
83. Shi, P., Ge, F., Sun, Y. and Chen, C. 2011. A simple model for describing the effect of temperature on insect developmental rate. J. Asia. Pac. Entomol., 14: 15–20.
84. SIMOES, A. M. A., Dindo, M. L. and Grenier, S. 2004. Development and yields of the tachinid Exorista larvarum in three common Noctuidae of Azores Archipelago and in a laboratory host. Bull. Insectol., 57: 145-150.
85. Soltani Orang, F., Ranjbar Aghdam, H., Abbasipour, H. and Askarianzadeh, A. 2014. Effect of temperature on developmental rate of Sesamia cretica (Lepidoptera: Noctuidae) immature stages. J. Insect Sci., 14(1): 197.
86. Taylor, F. 1981. Ecology and evolution of physiological time in insects. Am. Nat., 117: 1-23.
87. Tschorsnig, H. P. and Herting, B. 1994. Die Raupenfliegen (Diptera: Tachinidae) Mitteleuropas: Bestimmungstabellen und Angaben zur Verbreitung und Ökologie der einzelnen Arten. Stuttg. Beitr. Naturkd., 506: 1–170. [In German]
88. Walker, P. W. 2011. Biology and development of Chaetophthalmus dorsalis (Malloch) (Diptera: Tachinidae) parasitising Helicoverpa armigera (Hübner) and H. punctigera Wallengren (Lepidoptera: Noctuidae) larvae in the laboratory. Aust. J. Entomol., 50: 309-318.
89. Wang, R., Lan, Z. and Ding, Y. 1982. Studies on mathematical models of the relationship between insect development and temperature. Acta Ecol. Sinica., 2: 47–57.
90. Worner, S. P. 2008. Bioclimatic models in entomology. In: “Encyclopedia of entomology”, (Ed.): Capinera, J. L. Springer, Dordrecht, the Netherlands, PP. 476–481.
91. Wyckhuys, K. A. G., Akutse, K. S., Amalin, D. M., Araj, S. E., Barrera, G., Beltran, M., J. B., Ben Fekih, I., Calatayud, P. A., Cicero, L., Cokola, M. C., Colmenarez, Y. C., Dessauvages, K., Dubois, T., Durocher-Granger, L., Espinel, C., Fallet, P., Fernández-Triana, J. L., Francis, F. and Hadi, B. A. R.2024. Global scientific progress and shortfalls in biological control of the fall armyworm Spodoptera frugiperda. Biological Control, 191, 105460.
92. Yazdanpanah, S., Fathipour, Y., Riahi, E. and Zalucki, M. P. 2022. Modeling temperature-dependent development rate of Neoseiulus cucumeris (Acari: Phytoseiidae) fed on two alternative diets. Environ. Entomol., 51: 145-152.
93. Yin, X., Kropff, M. J., McLaren, G. and Visperas, R. M. 1995. A nonlinear model for crop development as a function of temperature. Agric. For. Meteorol., 77: 1–16.
94. Zahiri, B., Fathipour, Y., Khanjani, M., Moharramipour, S. and Zalucki, M. P. 2010. Preimaginal development response to constant temperatures in Hypera postica (Coleoptera: Curculionidae): picking the best model. Environ. Entomol., 39: 177–189.