Genetic structure and diversity of the beet armyworm Spodoptera exigua (Hübner) (Lepidoptera, Noctuidae) in Iran

Authors
1 Shahid Chamran University of Ahvaz
2 Ferdowsi University of Mashhad
Abstract
Spodoptera exigua is a significant agricultural pest in Iran. In this research, we analysed a 700 base pair DNA fragment of COI to assess the genetic diversity of this harmful pest. In total, 54 specimens were sampled across six Iran’s geographic areas, revealing six distinct haplotypes. The overall populations exhibited low genetic diversity (h = 0.463 ± 0.068, π = 0.00096 ± 0.00017). No distinct geographic pattern was observed in the haplotype distribution, as indicated by phylogenetic and median-joining network analyses. The median-joining network of Iranian haplotypes, combined with sequences from other global regions, demonstrated a lack of geographical clustering, with Hap.1 as the most prevalent haplotype spanning Iran, Europe, Asia, and Australia, indicative of extensive gene flow and shared evolutionary history. The Fst values for the Iranian populations ranged from -0.12240 to 0.07189, revealing no significant differentiation among the populations. Analysis of molecular variance showed a larger proportion of the variation within rather than between them, after 1000 random permutations, the level of population differentiation was found to be non-significant. The combination of an unimodal mismatch distribution and the non-significant results of Tajima's D (D = 0.02011, P > 0.05) and Fu's Fs (Fs = 3.33384, P > 0.05) suggested the beet armyworm may have expanded recently (~10,000–50,000 years ago) but has returned to a state resembling neutrality without significant selection pressures acting on it. Insights from this population genetic study can aid in crafting targeted approaches for managing this extensively migratory pest.

Keywords

Subjects


Anderson, C. J., Tay, W.T., McGaughran, A., Gordon, K. and Walsh, T. K. 2016. Population structure and gene flow in the global pest, Helicoverpa armigera. Mol Ecol., 25(21): 5296-5311.
Bandelt, H. J., Forster, P. and Röhl, A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol., 16(1): 37-48.
Behura, S. K. 2006. Molecular marker systems in insects: current trends and future avenues.
Mol. Ecol., 15: 3087– 3113.
Bohonak, A. J. 2002. IBD (isolation by distance): a program for analyses of isolation
by distance. J. Hered., 93(2): 153-154.
Bouvier, J. C., Buès, R., Boivin, T., Boudinhon, L., Beslay, D. and Sauphanor, B. 2001.
Deltamethrin resistance in the codling moth (Lepidoptera: Tortricidae): inheritance and
number of genes involved. J. Hered., 87(4): 456-462.
Crispo, E., Moore, J. S., Lee‐Yaw, J. A., Gray, S. M. and Haller, B. C. 2011. Broken barriers: Human‐induced changes to gene flow and introgression in animals: An examination of the ways in which humans increase genetic exchange among populations and species and the consequences for biodiversity. Bioessays., 33(7): 508-518.
Cao, L. J., Chen, J. C., Thia, J. A., Schmidt, T. L., Ffrench-Constant, R., Zhang, L. X., Yang, Y., Yuan, M. C., Zhang, J. Y., Zhang, X. Y. and Yang, Q. 2025. Recurrent Mutations Drive the Rapid Evolution of Pesticide Resistance in the Two-spotted Spider Mite Tetranychus urticae. bioRxiv., 2025-02.
Endersby, N. M., McKechnie, S. W., Ridland, P. M. and Weeks, A. R. 2006. Microsatellites reveal a lack of structure in Australian populations of the diamondback moth, Plutella xylostella (L.). Mol Ecol., 15(1): 107–118.
Excoffier, L., Lischer, H. E. 2010. Arlequin suite ver 3.5: a new series of programs to
perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour.,
10(3): 564-567.
Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. 1994. DNA primers for
amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan
invertebrates. Mol. Mar. Biol. Biotechnol., 3(5): 294–299.
Fu, Y.X. 1997. Statistical tests of neutrality of mutations against population growth,
hitchhiking and background selection. Genetics., 147(2):915-925.
Fu, X., Feng, H., Liu, Z. and Wu, K. 2017. Trans-regional migration of the beet armyworm, Spodoptera exigua (lepidoptera: Noctuidae), in north-east Asia. PLoS One.,
12:e0183582.
Golikhajeh, N., Naseri, B., Razmjou, J., Hosseini, R. and Aghbolaghi, M. A. 2018. Genetic variation of beet armyworm (Lepidoptera: Noctuidae) populations detected using microsatellite markers in Iran. J. Econ. Entomol., 111(3): 1404-1410.
Greenbaum, G., Templeton, A. R. and Bar-David, S. 2016. Inference and analysis of population structure using genetic data and network theory. Genetics., 202(4): 1299-1312.
Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis
program for Windows 95/98/NT. Nucleic Acids Symp Ser (Oxf)., 41(41): 95-98.
Hebert, P. D., Cywinska, A., Ball, S. L. and DeWaard, J. R. 2003. Biological identifications
through DNA barcodes. Proc. R. Soc. Lond. B. Biol. Sci., 270 (1512): 313-321.
Hu, B., Huang, H., Hu, S., Ren, M., Wei, Q., Tian, X., Esmail Abdalla Elzaki, M., Bass, C.,
Su, J. and Reddy Palli, S. 2021. Changes in both trans-and cis-regulatory elements mediate
insecticide resistance in a lepidopteron pest, Spodoptera exigua. PLoS Genetics., 17 (3):
p.e1009403.
Huang, J. M., Zhao, Y. X., Sun, H., Ni, H., Liu, C., Wang, X., Gao, C. F. and Wu, S. F. 2021.
Monitoring and mechanisms of insecticide resistance in Spodoptera exigua (Lepidoptera:
Noctuidae), with special reference to diamides. Pestic. Biochem. Physiol., 174, p.104831.
Jaba, J., Mishra, S. P., Arora, N. and Munghate, R. 2020. Impact of variegated temperature, CO2 and relative humidity on survival and development of beet armyworm Spodoptera exigua (Hȕbner) under controlled growth chamber. Am J Clim Change., 9(04): 357-370.
Kang, J. H., Ham, D., Park, S. H., Hwang, J. M., Park, S. J., Baek, M. J. and Bae, Y. J. 2023. Population genetic structure of a recent insect invasion: a gall midge, Asynapta groverae (Diptera: Cecidomyiidae) in South Korea since the first outbreak in 2008. Sci Rep., 13(1): 2812.
Kim, K. S. and Sappington, T. W. 2013. Population genetics strategies to characterize long-distance dispersal of insects. J Asia Pac Entomol., 16(1): 87-97.
Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 35(6): 1547 -1549.
Lee, K. P. 2017. Genetic variation in compensatory feeding for dietary dilution in a generalist caterpillar. Sci Rep., 7(1): 7461.
Leigh, J. W., Bryant, D. and Nakagawa, S. 2015. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol., 6 (9): 1110-1116.
Ma, H. T., Zhou, L. H., Tan, H., Xiu, X. Z., Wang, J. Y. and Wang, X. Y. 2024. Population dynamics and seasonal migration patterns of Spodoptera exigua in northern China based on 11 years of monitoring data. Peer J., 12: 17223.
Mantel, N. 1967. The detection of disease clustering and a generalized regression approach.
Cancer Res., 27 (2 Part 1): 209-220.
Martins, K., Gugger, P. F., Llanderal‐Mendoza, J., González‐Rodríguez, A., Fitz‐Gibbon, S. T., Zhao, J. L., Rodríguez‐Correa, H., Oyama, K. and Sork, V. L. 2018. Landscape genomics provides evidence of climate‐associated genetic variation in Mexican populations of Quercus rugosa. Evol Appl., 11(10):1842-1858.
McCulloch, G. A. and Waters, J. M. 2023. Rapid adaptation in a fast‐changing world: Emerging insights from insect genomics. Glob Chang Biol., 29(4): 943-954.
McEntire, K. D., Gage, M., Gawne, R., Hadfield, M. G., Hulshof, C., Johnson, M. A., Levesque, D. L., Segura, J. and Pinter-Wollman, N. 2021. Understanding drivers of variation and predicting variability across levels of biological organization. Ntegr. Comp. Biol., 61(6): 2119-2131.
Nei, M., and Miller, S. C. 1990. A simple method for estimating average number of
nucleotide substitutions within and between populations from restriction data. Genetics.,
125: 873–879.
Peng, Y., Mao, K., Li, H., Ping, J., Zhu, J., Liu, X., Zhang, Z., Jin, M., Wu, C., Wang, N
and Yesaya, A. 2025. Extreme genetic signatures of local adaptation in a notorious rice pest, Chilo suppressalis. Natl Sci Rev., 12(3): p.nwae221.
Ramesh, K. B., Mahendra, C., Gouda, M. R., Salim, R. and Subramanian, S. 2025. Genetic structure and haplotype analysis of predominant genetic group of Bemisia tabaci Asia II 1 from Asia and India. Sci Rep., 15(1): 11672.
Robinson, G., Ackery, S., Kitching, I. J., Beccaloni, G. W. and Hernández, L. M. 2010.
HOSTS - a database of the world’s lepidopteran hostplants. Natural History Museum, London.
Retrieved from: http://www.nhm.ac.uk/hosts.
Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P.,
Ramos-Onsins, S. E. and Sánchez-Gracia, A. 2017. DnaSP 6: DNA sequence
polymorphism analysis of large data sets. Mol. Biol. Evol., 34(12): 3299-3302.
Sheikhzadeh, B., Hejazi, M. J. and Karimzadeh, R. 2014. Effect of methoxyfenozide,
lufenuron, and flufenoxuron on beet armyworm Spodoptera exigua (Lep.: Noctuidae) in
laboratory conditions. JESI., 34 (1): 1-8.
Song, Z., Ze, S., Liu, C. and Chen, B. 2023. New insights into the genetic structure of the
outbreak-prone bamboo grasshoppers. Front. Ecol. Evol., 11: 1062857.
Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA
polymorphism. Genetics., 123: 585–595.
Urantowka, A. D., Kroczak, A. and Mackiewicz, P. 2017. The influence of molecular
markers and methods on inferring the phylogenetic relationships between the representatives of the Arini (Parrots, Psittaciformes), determined on the basis of their complete mitochondrial genomes. BMC Evol. Biol., 17: 1-26.
Wang, X. Y., Zhou, L. H., Zhong, T. and Xu, G. Q., 2014. Genetic variation, phylogeographic structure of Spodoptera exigua in the welsh onion‐producing areas of North China. Journal of applied entomology, 138(8): 612-622.
Wang, X. Y., Wang, M. M., Chen, C. and Wang, X. Q. 2020. Genetic variation and phylogeographic structure of Spodoptera exigua in western China based on mitochondrial DNA and microsatellite markers. PLoS ONE., 15(5): e0233133.
Wang, X., Yang, X., Zhou, L., Wyckhuys, K. A., Jiang, S., Van Liem, N., Vi, L. X., Ali, A. and Wu, K. 2022. Population genetics unveils large‐scale migration dynamics and population turnover of Spodoptera exigua. Pest Manag Sci., 78(2): 612-625.
Wang, X., Feng, Q., Zhou, X., Zhang, H., Wu, S. and Wu, K. 2024. Seasonal Migratory Activity of the Beet Armyworm Spodoptera exigua (Hübner) in the Tropical Area of China. Insects., 15(12): 986.
Wei, J., Chen, H. T., Cui, J. H. and Zhou, S. H. 2010. Bibliometric analysis on the study
of Spodoptera exigua from 1989 to 2010 in China. J. Changjiang. Veg., 18: 124-127.
Zhang, B., Sanders, H. H., Wang, J. J. and Liu, H. 2011. Performance and enzyme activity of beet armyworm Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) under various nutritional conditions. Agric Sci China., 10(5): 737–746.
Zhang, L., Cai, W., Luo, J., Zhang, S., Li, W., Wang, C., Lv, L. and Cui, J. 2018.
Population genetic structure and expansion patterns of the cotton pest Adelphocoris
fasciaticollis. J. Pest Sci., 91: 539-550.

Articles in Press, Accepted Manuscript
Available Online from 16 September 2025