Applying Machine Learning to Strategic Market Prioritization in the Dairy Export Sector

Authors
1 Master's Student, Department of Agricultural Economics, University of Tehran, Karaj, Iran.
2 Full Professor, Department of Agricultural Economics, University of Tehran, Karaj, Iran.
Abstract
This study presents an innovative framework for optimizing Iran’s dairy exports by integrating machine learning and multi-criteria decision-making techniques. Utilizing a comprehensive 20-year dataset spanning 2003 to 2022, sourced from credible international databases, four machine learning models, Bagging Regression, CatBoost Regression, Gradient Boosted Regression, and Extreme Gradient Boosting, were employed to forecast dairy export values. The CatBoost Regression model demonstrated superior predictive accuracy, achieving a coefficient of determination of 0.93. To enhance interpretability, SHAP analysis was applied, revealing population, economic size, and trade potential as the most influential factors driving export performance. Concurrently, the TOPSIS method was used to prioritize potential export markets based on economic and trade-related criteria, identifying Turkey, Iraq, and Pakistan as the top destinations due to their proximity, market demand, and trade compatibility. This dual approach combines predictive analytics with strategic market ranking, offering actionable insights for policymakers and exporters aiming to bolster Iran’s non-oil economy. The findings highlight the critical role of regional markets and trade infrastructure in enhancing dairy export competitiveness. By leveraging advanced analytics, this research supports sustainable agricultural development and economic diversification in Iran, addressing the vulnerability of its oil-dependent economy. The methodology and results provide a robust foundation for future export strategies, emphasizing the synergy between data-driven forecasting and systematic decision-making in agricultural trade optimization.

Keywords

Subjects


Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2623–2631. https://doi.org/10.1145/3292500.3330701
Alzubi, J., Nayyar, A., & Kumar, A. (2018). Machine Learning from Theory to Algorithms: An Overview. Journal of Physics: Conference Series, 1142, 012012. https://doi.org/10.1088/1742-6596/1142/1/012012
Antonucci, D., & Manzocchi, S. (2006). Does Turkey have a special trade relation with the EU? Economic Systems, 30(2), 157–169. https://doi.org/10.1016/j.ecosys.2005.10.003
Barbieri, M. C., Grisci, B. I., & Dorn, M. (2024). Analysis and comparison of feature selection methods towards performance and stability. Expert Systems with Applications, 249, 123667. https://doi.org/10.1016/j.eswa.2024.123667
Belyaev, V., Butakova, M., & Goryaninskaya, O. (2019). Export of dairy products of the Altai Region: opportunities, prospects, and problems. IOP Conference Series: Earth and Environmental Science, 395(1), 012100. https://doi.org/10.1088/1755-1315/395/1/012100
Binkhonain, M., & Zhao, L. (2019). A review of machine learning algorithms for identification and classification of non-functional requirements. Expert Systems with Applications: X, 1, 100001. https://doi.org/10.1016/j.eswax.2019.100001
Bojnec, Š., & Fertő, I. (2014). Export competitiveness of dairy products on global markets: The case of the European :union: countries. Journal of Dairy Science, 97(10), 6151–6163. https://doi.org/10.3168/jds.2013-7711
Cele, L. P., Hennessy, T., & Thorne, F. (2022). Evaluating farm and export competitiveness of the Irish dairy industry: post-quota analysis. Competitiveness Review: An International Business Journal, 32(7), 1–20. https://doi.org/10.1108/CR-11-2020-0136
Chakraborty, S. (2022). TOPSIS and Modified TOPSIS: A comparative analysis. Decision Analytics Journal, 2, 100021. https://doi.org/10.1016/j.dajour.2021.100021
Chen, S.-J., & Hwang, C.-L. (1992). Fuzzy Multiple Attribute Decision Making Methods (pp. 289–486). https://doi.org/10.1007/978-3-642-46768-4_5
Dolphin, R., Smyth, B., Xu, Y., & Dong, R. (2021). Measuring Financial Time Series Similarity with a View to Identifying Profitable Stock Market Opportunities (pp. 64–78). https://doi.org/10.1007/978-3-030-86957-1_5
Du, C., Swigonová, Z., & Messing, J. (2006). Retrotranspositions in orthologous regions of closely related grass species. BMC Evolutionary Biology, 6, 62. https://doi.org/10.1186/1471-2148-6-62
Dunford, M., Liu, Z., & Xue, J. (2020). Chinese overseas ports: Market potential, supply capacity and access to imports. Journal of Geographical Sciences, 30(10), 1681–1701. https://doi.org/10.1007/s11442-020-1807-7
Farzanegan, M. R., & Markwardt, G. (2009). The effects of oil price shocks on the Iranian economy. Energy Economics, 31(1), 134–151. https://doi.org/10.1016/j.eneco.2008.09.003
Ghafarian Nia, S. A., Shahbeik, H., Shafizadeh, A., Rafiee, S., Hosseinzadeh-Bandbafha, H., Kiehbadroudinezhad, M., Sheikh Ahmad Tajuddin, S. A. F., Tabatabaei, M., & Aghbashlo, M. (2025). Machine learning-driven optimization for sustainable CO2-to-methanol conversion through catalytic hydrogenation. Energy Conversion and Management, 325, 119373. https://doi.org/10.1016/j.enconman.2024.119373
Gois, T. C., Thomé, K. M., & Balogh, J. M. (2023). Behind a cup of coffee: international market structure and competitiveness. Competitiveness Review: An International Business Journal, 33(5), 993–1009. https://doi.org/10.1108/CR-10-2021-0141
Guo, W., Shafizadeh, A., Shahbeik, H., Rafiee, S., Motamedi, S., Ghafarian Nia, S. A., Nadian, M. H., Li, F., Pan, J., Tabatabaei, M., & Aghbashlo, M. (2024). Machine learning for predicting catalytic ammonia decomposition: An approach for catalyst design and performance prediction. Journal of Energy Storage, 89, 111688. https://doi.org/10.1016/j.est.2024.111688
Hongliang, G., Zhiyao, Z., Ahmadianfar, I., Escorcia-Gutierrez, J., Aljehane, N. O., & Li, C. (2024). Multi-step influenza forecasting through singular value decomposition and kernel ridge regression with MARCOS-guided gradient-based optimization. Computers in Biology and Medicine, 169, 107888. https://doi.org/10.1016/j.compbiomed.2023.107888
Hosein Abadi, A. (2019). Role of Livestock in Rural Economy Development in Lorestan Province. Geography and Human Relationships, 1(4), 495–505. https://www.gahr.ir/article_88263.html
Hou, T.-Y., Tseng, Y.-C., & Yuan, C. W. (Tina). (2024). Is this AI sexist? The effects of a biased AI’s anthropomorphic appearance and explainability on users’ bias perceptions and trust. International Journal of Information Management, 76, 102775. https://doi.org/10.1016/j.ijinfomgt.2024.102775
Huang, J., Sun, Y., & Zhang, J. (2022). Reduction of computational error by optimizing SVR kernel coefficients to simulate concrete compressive strength through the use of a human learning optimization algorithm. Engineering with Computers, 38(4), 3151–3168. https://doi.org/10.1007/s00366-021-01305-x
International Trade Center. (2024). Trade Map Home. Trade Map. https://www.trademap.org/Index.aspx
Kahouli, B., & Maktouf, S. (2015). The determinants of FDI and the impact of the economic crisis on the implementation of RTAs: A static and dynamic gravity model. International Business Review, 24(3), 518–529. https://doi.org/10.1016/j.ibusrev.2014.10.009
Kang, Y., Khan, S., & Ma, X. (2009). Climate change impacts on crop yield, crop water productivity and food security – A review. Progress in Natural Science, 19(12), 1665–1674. https://doi.org/10.1016/j.pnsc.2009.08.001
Kern, R., Al-Ubaidi, T., Sabol, V., Krebs, S., Khodachenko, M., & Scherf, M. (2020). Astro- and Geoinformatics – Visually Guided Classification of Time Series Data. In Knowledge Discovery in Big Data from Astronomy and Earth Observation (pp. 267–282). Elsevier. https://doi.org/10.1016/B978-0-12-819154-5.00025-4
Linnemann, H., & Beers, C. (1988). Measures of export-import similarity, and the linder hypothesis once again. Weltwirtschaftliches Archiv, 124(3), 445–457. https://doi.org/10.1007/BF02708659
Louhichi, M., Nesmaoui, R., Mbarek, M., & Lazaar, M. (2023). Shapley Values for Explaining the Black Box Nature of Machine Learning Model Clustering. Procedia Computer Science, 220, 806–811. https://doi.org/10.1016/j.procs.2023.03.107
Luo, Y., & Bano, S. (2020). Modelling New Zealand dairy products: evidence on export survival and duration. Australian Journal of Agricultural and Resource Economics, 64(3), 605–631. https://doi.org/10.1111/1467-8489.12372
Madanchian, M., & Taherdoost, H. (2023). A comprehensive guide to the TOPSIS method for multi-criteria decision making. Sustainable Social Development, 1(1). https://doi.org/10.54517/ssd.v1i1.2220
Majidian, M., & Dourandish, A. (2024). Prioritizing Iran’s Saffron Target Markets Based on Market Competition Indices. Journal of Agricultural Economics and Development, 38(2), 177–194. https://doi.org/10.22067/jead.2024.87254.1258
Mehrabi, H., & Koochakzadeh, S. (2009). Modeling and Forecasting of Agricultural Products Export in Iran: Application of Artificial Neural Networks. Journal of Agricultural Economics and Development, 23(1). https://doi.org/10.22067/jead2.v1388i1.2067
Niazkar, M., Menapace, A., Brentan, B., Piraei, R., Jimenez, D., Dhawan, P., & Righetti, M. (2024). Applications of XGBoost in water resources engineering: A systematic literature review (Dec 2018–May 2023). Environmental Modelling & Software, 174, 105971. https://doi.org/10.1016/j.envsoft.2024.105971
Nohara, Y., Matsumoto, K., Soejima, H., & Nakashima, N. (2022). Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Computer Methods and Programs in Biomedicine, 214, 106584. https://doi.org/10.1016/j.cmpb.2021.106584
Nosratabadi, S., Mosavi, A., & Lakner, Z. (2020). Food Supply Chain and Business Model Innovation. Foods, 9(2), 132. https://doi.org/10.3390/foods9020132
Osmond, O. N., & Okechukwu, A. J. (2024). Non-Oil Exports, Exchange Rate Management and Economic Growth in Nigeria. INTERNATIONAL JOURNAL OF ECONOMICS AND FINANCIAL MANAGEMENT, 8(8), 19–34. https://doi.org/10.56201/ijefm.v8.no8.2023.pg19.34
Otchere, D. A., Ganat, T. O. A., Ojero, J. O., Tackie-Otoo, B. N., & Taki, M. Y. (2022). Application of gradient boosting regression model for the evaluation of feature selection techniques in improving reservoir characterisation predictions. Journal of Petroleum Science and Engineering, 208, 109244. https://doi.org/10.1016/j.petrol.2021.109244
Paluj, M. (2019). Pathology of the Agro-industrial Exploitation System and Its Development Strategies. Iranian Agricultural Extension and Education Journal, 14(2), 201–217. http://www.iaeej.ir/article_84991.html
Pan, J., Shahbeik, H., Shafizadeh, A., Rafiee, S., Golvirdizadeh, M., Ghafarian Nia, S. A., Mobli, H., Yang, Y., Zhang, G., Tabatabaei, M., & Aghbashlo, M. (2024). Machine learning optimization for enhanced biomass-coal co-gasification. Renewable Energy, 229, 120772. https://doi.org/10.1016/j.renene.2024.120772
Popko, O., Malchyk, M., Tolchanova, Z., Salamakha, O., & Illin, V. (2024). Logistic model for forecasting the growth of Ukrainian dairy exports. BIO Web of Conferences, 114, 01029. https://doi.org/10.1051/bioconf/202411401029
Ribeiro, N. G., Xavier-Santos, D., Campelo, P. H., Guimarães, J. T., Pimentel, T. C., Duarte, M. C. K. H., Freitas, M. Q., Esmerino, E. A., Silva, M. C., & Cruz, A. G. (2022). Dairy foods and novel thermal and non-thermal processing: A bibliometric analysis. Innovative Food Science & Emerging Technologies, 76, 102934. https://doi.org/10.1016/j.ifset.2022.102934
Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818. https://doi.org/10.1016/j.oregeorev.2015.01.001
Singh, U., Rizwan, M., Alaraj, M., & Alsaidan, I. (2021). A Machine Learning-Based Gradient Boosting Regression Approach for Wind Power Production Forecasting: A Step towards Smart Grid Environments. Energies, 14(16), 5196. https://doi.org/10.3390/en14165196
Srinivas, P., & Katarya, R. (2022). hyOPTXg: OPTUNA hyper-parameter optimization framework for predicting cardiovascular disease using XGBoost. Biomedical Signal Processing and Control, 73, 103456. https://doi.org/10.1016/j.bspc.2021.103456
Sun, M., Yang, J., Yang, C., Wang, W., Wang, X., & Li, H. (2024). Research on prediction of PPV in open-pit mine used RUN-XGBoost model. Heliyon, 10(7), e28246. https://doi.org/10.1016/j.heliyon.2024.e28246
Tasneem, S., Ageeli, A. A., Alamier, W. M., Hasan, N., & Goodarzi, M. (2024). Development of machine learning-based models for describing processes in a continuous solar-driven biomass gasifier. International Journal of Hydrogen Energy, 52, 718–738. https://doi.org/10.1016/j.ijhydene.2023.08.043
Tiits, M., Kalvet, T., Ounoughi, C., & Ben Yahia, S. (2024a). Relatedness and product complexity meet gravity models of international trade. Journal of Open Innovation: Technology, Market, and Complexity, 10(2), 100288. https://doi.org/10.1016/j.joitmc.2024.100288
Tiits, M., Kalvet, T., Ounoughi, C., & Ben Yahia, S. (2024b). Relatedness and product complexity meet gravity models of international trade. Journal of Open Innovation: Technology, Market, and Complexity, 10(2), 100288. https://doi.org/10.1016/j.joitmc.2024.100288
Vu, H. L., Ng, K. T. W., Richter, A., & An, C. (2022). Analysis of input set characteristics and variances on k-fold cross validation for a Recurrent Neural Network model on waste disposal rate estimation. Journal of Environmental Management, 311, 114869. https://doi.org/10.1016/j.jenvman.2022.114869
Wang, H., Liang, Q., Hancock, J. T., & Khoshgoftaar, T. M. (2024). Feature selection strategies: a comparative analysis of SHAP-value and importance-based methods. Journal of Big Data, 11(1), 44. https://doi.org/10.1186/s40537-024-00905-w
Wang, Y., Shahbeik, H., Moradi, A., Rafiee, S., Shafizadeh, A., Khoshnevisan, B., Ghafarian Nia, S. A., Nadian, M. H., Li, M., Pan, J., Tabatabaei, M., & Aghbashlo, M. (2024). Predictive modeling for hydrogen storage in functionalized carbonaceous nanomaterials using machine learning. Journal of Energy Storage, 97, 112914. https://doi.org/10.1016/j.est.2024.112914
Weber, M. (2006). Foresight and adaptive planning as complementary elements in anticipatory policy-making: a conceptual and methodological approach. Reflexive Governance for Sustainable Development, 189–221.
World Bank. (2024). World Bank Data. World Bank.
Yang, Y., Shahbeik, H., Shafizadeh, A., Rafiee, S., Hafezi, A., Du, X., Pan, J., Tabatabaei, M., & Aghbashlo, M. (2023). Predicting municipal solid waste gasification using machine learning: A step toward sustainable regional planning. Energy, 278, 127881. https://doi.org/10.1016/j.energy.2023.127881

Articles in Press, Accepted Manuscript
Available Online from 16 September 2025