Assessing the impact of long-term rearing on pollen diet (saffron and cattail) versus factitious prey [Tyrophagus putrescentiae (Acari: Astigmatidae)] on the biological performance of Neoseiulus californicus (Acari: Phytoseiidae)

Authors
Tarbiat Modares University
Abstract
The biological performance of Neoseiulus californicus (McGregor) as a selective generalist predator of spider mites was assessed up to 10 generations (G1 and G10) fed on the saffron and cattail pollen grains, as well as the factitious prey Tyrophagus putrescentiae Schrank (Acari: Astigmatidae). All the experiments were conducted under laboratory conditions at 25±1°C, 65±5% RH, and a photoperiod of 16:8 (L: D) h. The total pre-oviposition period (TPOP) was shorter in G10 than in G1 when the predator was fed with the factitious prey. Female longevity and the total lifespan of N. californicus were significantly reduced in G10 compared to G1 across all diets. The values of the gross reproductive rate (GRR), net reproductive rate (R0), and intrinsic and finite rates of increase (r and λ, respectively) had no significant difference between G1 and G10 when the predator was reared on the cattail pollen. In contrast, the values of these parameters were significantly lower in G10 on the prey and saffron pollen. After one generation of feeding on saffron pollen, GRR, R0, r, and λ showed no significant differences compared to the cattail pollen, prey, and mixed diets, while in G10, these values had no significant difference when the predator reared on the cattail pollen and factitious prey, whereas these values were higher than those fed on the saffron pollen. In conclusion, cattail pollen and T. putrescentiae are more suitable than saffron pollen for the rearing of the predatory mite N. californicus for up to 10 generations.

Keywords


1. Al-Shammery, K.A. 2011. Plant pollen as an alternative food source for rearing Euseius scutalis (Acari: Phytoseiidae) in Hail. Saudi Arab J. Entomol., 8(4):365–374.
2. Barbosa, M.F.C. and de Moraes, G.J. 2015. Evaluation of astigmatid mites as factitious food for rearing four predaceous phytoseiid mites (Acari: Astigmatina; Phytoseiidae). Biological Control, 91: 22–26.
3. Bellutti, N. 2011. Effects of mass rearing on life-history traits of an invasive fruit moth species, Grapholita molesta (Busck). Master Thesis. Institute of Forest Entomology, Forest Pathology and Forest Protection, BOKU Vienna, p. 35.
4. Carey, J.R. 2001. Insect biodemography. Annu. Rev. Entomol., 46:79-110.
5. Chi, H. 1988. Life-table analysis incorporating both sexes and variable development rate among individuals. Environ. Entomol., 17(1): 26–34.
6. Chi, H. 2025. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. (https://lifetablechi.com/software) (Accessed 1 January 2025)
7. Chi, H. and Liu, H. 1985. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Academia Sinica, 24(2): 225–240.
8. Delisle, J.F., Brodeur, J. and Shipp, L. 2015. Evaluation of various types of supplemental food for two species of predatory mites, Amblyseius swirskii and Neoseiulus cucumeris (Acari: Phytoseiidae). Exp. Appl. Acarol., 65(4): 483–494.
9. de Moraes, G.J., McMurtry, J.A., Denmark, H.A. and Campos, C.B. 2004. A revised catalog of the mite family Phytoseiidae. Zootaxa, 434:1–494.
10. Eini, N., Jafari, S., Fathipour, Y. and Zalucki, M.P. 2022. How pollen grains of 23 plant species affect performance of predatory mite Neoseiulus californicus. BioControl, 67(2): 173–187.
11. Eini, N., Jafari, S., Fathipour, Y. and Prager, S.M. 2023. Experienced generation-dependent functional and numerical responses of Neoseiulus californicus (Acari: Phytoseiidae) long-term reared on thorn apple pollen. Acarologia, 63(2): 539-552.
12. Gerson, U., Smiley, R.L. and Ochoa, R. 2003. Mites (Acari) for Pest Control. Blackwell, Science, Oxford.
13. Farazmand, A., Fathipour, Y. and Kamali, K. 2012. Functional response and mutual interference of Neoseiulus californicus and Typhlodromus bagdasarjani (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae). Int. J. Acarol., 38(5): 369-376.
14. Huang, Y.B. and Chi, H. 2012. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age specific life tables to insect populations. Insect Science, 19: 263–273.
15. Huang, H., Xu, X., Lv, J., Li, G., Wang, E. and Gao, Y. 2013. Impact of proteins and saccharides on mass production of Tyrophagus putrescentiae (Acari: Acaridae) and its predator Neoseiulus barkeri (Acari: Phytoseiidae). Biocontrol Sci. Technol., 23: 1231–1244.
16. Khanamani, M., Fathipour, Y., Talebi, A.A. and Mehrabadi, M. 2017. How pollen supplementary diet affect life table and predation capacity of Neoseiulus californicus on two-spotted spider mite. Syst. Appl. Acarol., 22(1):135–147.
17. Khanamani, M., Basij, M. and Fathipour, Y. 2021. Effectiveness of factitious foods and artificial substrate in mass rearing and conservation of Neoseiulus californicus (Acari: Phytoseiidae). Int. J. Acarol., 47(4): 273–280.
18. Marafeli, P.P., Reis, P.R., Silveira, E.C., Souza-Pimentel, G.C. and Toledo, M.A. 2014. Life history of Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) fed with castor bean (Ricinus communis L.) pollen in laboratory conditions. Braz. J. Biol., 74(3): 691–697.
19. Mayntz, D., Raubenheimer, D., Salomon, M., Toft, S. and Simpson, S.J. 2005. Nutrient-specific foraging in invertebrate predators. Science, 307(5706): 111–113.
20. McMurtry, J.A., de Moraes, G.J. and Sourassou, N.F. 2013. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst. Appl. Acarol., 18: 297–320.
21. Moradia, E., Feizy, J. and Lakshmipathy, R. 2021. Microencapsulation of saffron pollen extract by spray drying to preserve its nutritional properties. J. Food Bioprocess Eng., 4(2): 146-152.
22. Mortazavi, N., Fathipour, Y., Talebi, A.A. and Riahi, E. 2023. Suitability of monotypic and mixed diets for development, population growth and predation capacity of Typhlodromus bagdasarjani (Acari: Phytoseiidae). Bull. Entomol. Res., 113(1):107–117.
23. Noei, J., Hajizadeh, J. and Ostovan H. 2012. Introduction and identification key of stored astigmatic mites (Acari: Astigmata) of rice in Guilan Province. Plant Pest Res., 2: 31-44.
24. Reddy, G.V. and Chi, H. 2015. Demographic comparison of sweet potato weevil reared on a major host, Ipomoea batatas, and an alternative host, I. triloba. Sci. Rep., 5(1):11871–11879.
25. Samaras, K., Pappas, M.L., Fytas, E. and Broufas, G.D. 2019. Pollen provisioning enhances the performance of Amblydromalus limonicus on an unsuitable prey. Front. Ecol. Evol., 7(2):122.
26. Simoni, S., Burgio, G., Tarchi, F., Guidi, S., Goggioli, D., Gagnarli, E., Turillazzi, F. and Lanzoni, A. 2023. Kill rate as a tool in efficiency evaluation of Neoseiulus californicus (Acari: Phytoseiidae) mass reared on factitious food. J. Insect Sci., 23(5): 10; 1–9.
27. Soltaniyan, A., Kheradmand, K., Fathipour, Y. and Shirdel, D. 2018. Suitability of pollen from different plant species as alternative food sources for Neoseiulus californicus (Acari: Phytoseiidae) in comparison with a natural prey. j. Econ. Entomol., 111(5): 2046–2052.
28. Soltaniyan, A., Kheradmand, K., Fathipour, Y. and Shirdel, D. 2020. Supplementation of natural prey with pollen grains exerts an influence on the life table parameters of Neoseiulus californicus. Bull. Entom. Res., 110(4): 535–541.
29. Sørensen, J.G., Addison, M.F. and Terblanche, J.S. 2012. Mass rearing of insects for pest management: challenges, synergies and advances from evolutionary physiology. Crop Protec., 38: 87–94.
30. Tung, N.D., Anh, N.T. and Fang, X.D. 2022. Effects of factitious prey on the biology and growth rate of the predatory mites Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). Zoosymposia, 22: 121–121.
31. van Lenteren, J.C. 2012. The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl, 57: 1–20.
32. Vijendravarma, R.K., Narasimha, S. and Kawecki, T.J. 2010. Effects of parental larval diet on egg size and offspring traits in Drosophila. Biol. Lett., 6 (2):238–241.
33. Wade, M.R., Zalucki, M.P., Wratten, S.D. and Robinson, K.A. 2008. Conservation biological control of arthropods using artificial food sprays: current status and future challenges. Biol. Control., 45(2):185–199.
34. Xin, T. and Zhang, Z. 2021. Suitability of pollen as an alternative food source for different developmental stages of Amblyseius herbicolus (Chant) (Acari: Phytoseiidae) to facilitate predation on whitefly eggs. Acarologia, 61(4): 790–801.
35. Yazdanpanah, S., Fathipour, Y. and Riahi, E. 2021. Pollen grains are suitable alternative food for rearing the commercially used predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae). Syst. Appl. Acarol., 26(5): 1009–1020.
36. Yazdanpanah, S., Fathipour, Y., Riahi, E. and Zalucki, M.P. 2022. Cost-effective and efficient factitious prey for mass production of Neoseiulus cucumeris (Acari: Phytoseiidae): assessing its quality compared with natural prey. Egypt. J. Biol. Pest Control, 32: 16.
37. Yazdanpanah, S. and Fathipour, Y. 2023a. Predators of mite pests. In Omkar O (ed.), Insect Predators in Pest Management. Boca Raton, USA: Taylor & Francis, pp. 245–283. https://doi.org/10.1201/9781003370864-10
38. Yazdanpanah, S. and Fathipour, Y. 2023b. How mixture of plant and prey diets affects long-term rearing of predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae). Ann. Entomol. Soc., 116(4): 185–194.

Articles in Press, Accepted Manuscript
Available Online from 16 September 2025