Root Architectural Diversity in Wheat Cultivars and Its Role in Response to Terminal Water Stress

Authors
1 Shiraz University, School of Agriculture, Department of Plant Production and Genetics
2 Shiraz University, School of Agriculture, Department of Plant Production and Genetics,
Abstract
Root architecture plays a key role in optimizing water uptake and sustaining yield under drought stress. The aim of this study was to investigate the role of vertical root distribution in determining the performance of three irrigated wheat cultivars under terminal water stress (TWS). A field experiment was conducted during the 2021–2022 growing season at Shiraz University (School of Agriculture), evaluating three bread wheat cultivars: Pishgam, Torabi, and Sirvan. The low-cost "pasta strainer" method, originally developed for evaluating rice root systems using plastic baskets, was adapted and employed to assess wheat mature root architecture in this context. To assess vertical root distribution, roots protruding through the side perforations of strainers were counted at three defined depth intervals: shallow (2–8 cm; SRN), middle (8–10 cm; MRN), and deep (10–13 cm; DRN). The results revealed significant differences in root architecture among cultivars. Compared to Sirvan and Torabi, Pishgam exhibited a more uniform root distribution across SRN, MRN, and particularly DRN. A significant interaction between irrigation and cultivar was observed for root weight, root volume, shoot biomass, and grain yield (GY). Pishgam appeared to be superior in most of measured traits. GY showed a positive association with MRN and DRN, which was further supported by principal component analysis aligning GY with root weight, root volume, MRN, and DRN. Despite the advantages and limitations of the pasta strainer method, our results demonstrated that cultivar with deeper rooting type, exhibited better drought performance.

Keywords

Subjects


Alahmad, S., El Hassouni, K., Bassi, F. M., Dinglasan, E., Youssef, C., Quarry, G., Aksoy, A., Mazzucotelli, E., Juhász, A., Able, J. A., Christopher, J., Voss-Fels, K. P., & Hickey, L. T. (2019). A major root architecture QTL responding to water limitation in durum wheat. Frontiers in Plant Science, 10(April), 1–18. https://doi.org/10.3389/fpls.2019.00436
Asefa, M., Worthy, S. J., Cao, M., Song, X., Lozano, Y. M., & Yang, J. (2022). Above- and below-ground plant traits are not consistent in response to drought and competition treatments. Annals of Botany, 130(7), 939–950. https://doi.org/10.1093/aob/mcac108
Awad, W., Byrne, P. F., Reid, S. D., Comas, L. H., & Haley, S. D. (2018). Great Plains Winter Wheat Varies for Root Length and Diameter under Drought Stress. Agronomy Journal, 110(1), 226–235. https://doi.org/https://doi.org/10.2134/agronj2017.07.0377
Borrell, A. K., Mullet, J. E., George-Jaeggli, B., van Oosterom, E. J., Hammer, G. L., Klein, P. E., & Jordan, D. R. (2014). Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. Journal of Experimental Botany, 65(21), 6251–6263. https://doi.org/10.1093/jxb/eru232
Botwright Acuña, T. L., & Wade, L. J. (2012). Genotype×environment interactions for root depth of wheat. Field Crops Research, 137, 117–125. https://doi.org/https://doi.org/10.1016/j.fcr.2012.08.004
Boudiar, R., Cabeza, A., Fernández-Calleja, M., Pérez-Torres, A., Casas, A. M., González, J. M., Mekhlouf, A., & Igartua, E. (2021). Root trait diversity in field grown durum wheat and comparison with seedlings. Agronomy, 11(12), 2545. https://doi.org/10.3390/agronomy11122545
Chen, Y., Palta, J., Prasad, P. V. V., & Siddique, K. H. M. (2020). Phenotypic variability in bread wheat root systems at the early vegetative stage. BMC Plant Biology, 20(1), 185. https://doi.org/10.1186/s12870-020-02390-8
Crocker, T. L., Hendrick, R. L., Ruess, R. W., Pregitzer, K. S., Burton, A. J., Allen, M. F., Shan, J., & Morris, L. A. (2003). Substituting root numbers for length: improving the use of minirhizotrons to study fine root dynamics. Applied Soil Ecology, 23(2), 127–135. https://doi.org/https://doi.org/10.1016/S0929-1393(03)00024-6
Deery, D. M., Rebetzke, G. J., Jimenez-Berni, J. A., Bovill, W. D., James, R. A., Condon, A. G., Furbank, R. T., Chapman, S. C., & Fischer, R. A. (2019). Evaluation of the Phenotypic Repeatability of Canopy Temperature in Wheat Using Continuous-Terrestrial and Airborne Measurements. Frontiers in Plant Science, 10, 875. https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2019.00875
Ehdaie, B., Layne, A. P., & Waines, J. G. (2012). Root system plasticity to drought influences grain yield in bread wheat. Euphytica, 186(1), 219–232. https://doi.org/10.1007/s10681-011-0585-9
El Hassouni, K., Alahmad, S., Belkadi, B., Filali-Maltouf, A., Hickey, L. T., & Bassi, F. M. (2018). Root system architecture and its association with yield under different water regimes in Durum wheat. Crop Science, 58(6), 2331–2346. https://doi.org/10.2135/cropsci2018.01.0076
Figueroa-bustos, V., Palta, J. A., Chen, Y., Stefanova, K., Siddique, K. H. M., & Armstrong, R. D. (2020). Wheat Cultivars With Contrasting Root System Size Responded Differently to Terminal Drought. 11, 1–12. https://doi.org/10.3389/fpls.2020.01285
Fradgley, N., Evans, G., Biernaskie, J. M., Cockram, J., Marr, E. C., Oliver, A. G., Ober, E., & Jones, H. (2020). Effects of breeding history and crop management on the root architecture of wheat. Plant and Soil, 452(1), 587–600. https://doi.org/10.1007/s11104-020-04585-2
Gioia, T., Galinski, A., Lenz, H., Müller, C., Lentz, J., Heinz, K., Briese, C., Putz, A., Fiorani, F., Watt, M., Schurr, U., & Nagel, K. A. (2017). GrowScreen-PaGe, a non-invasive, high-throughput phenotyping system based on germination paper to quantify crop phenotypic diversity and plasticity of root traits under varying nutrient supply. Functional Plant Biology, 44(1), 76–93. https://doi.org/10.1071/FP16128
Grzesiak, M. T., Hordyńska, N., Maksymowicz, A., Grzesiak, S., & Szechyńska-Hebda, M. (2019). Variation Among Spring Wheat (Triticum aestivum L.) Genotypes in Response to the Drought Stress. II—Root System Structure. In Plants (Vol. 8, Issue 12). https://doi.org/10.3390/plants8120584
Gutierrez, M., Reynolds, M. P., & Klatt, A. R. (2010). Association of water spectral indices with plant and soil water relations in contrasting wheat genotypes. Journal of Experimental Botany, 61(12), 3291–3303. https://doi.org/10.1093/jxb/erq156
Jahani Doghozlou, M., & Emam, Y. (2022). Differential floral developmental patterns in some recently released Iranian bread wheat cultivars. Journal of Agricultural Science and Technology, 24(6), 1397–1411. https://doi.org/10.52547/jast.24.6.1397
Lakde, S., Khobra, R., Sahi, V. P., Mamrutha, H. M., Wadhwa, Z., Rani, P., Kumar, Y., Ahlawat, O. P., & Singh, G. (2024). Unraveling the ability of wheat to endure drought stress by analyzing physio-biochemical, stomatal and root architectural traits. Plant Physiology Reports, 29(3), 614–637. https://doi.org/10.1007/s40502-024-00799-z
Leng, G., & Hall, J. (2019). Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Science of the Total Environment, 654, 811–821. https://doi.org/10.1016/j.scitotenv.2018.10.434
Li, X., Ingvordsen, C. H., Weiss, M., Rebetzke, G. J., Condon, A. G., James, R. A., & Richards, R. A. (2019). Deeper roots associated with cooler canopies, higher normalized difference vegetation index, and greater yield in three wheat populations grown on stored soil water. Journal of Experimental Botany, 70(18), 4963–4974. https://doi.org/10.1093/jxb/erz232
Maccaferri, M., El-Feki, W., Nazemi, G., Salvi, S., Canè, M. A., Colalongo, M. C., Stefanelli, S., & Tuberosa, R. (2016). Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. Journal of Experimental Botany, 67(4), 1161–1178. https://doi.org/10.1093/jxb/erw039
Mahdavi, Z., Rashidi, V., Yarnia, M., Aharizad, S., & Roustaii, M. (2023). Evaluation of yield traits and tolerance indices of different wheat genotypes under drought stress conditions. Cereal Research Communications, 51(3), 659–669. https://doi.org/10.1007/s42976-022-00322-w
Manschadi, A. M., Christopher, J., deVoil, P., & Hammer, G. L. (2006). The role of root architectural traits in adaptation of wheat to water-limited environments. Functional Plant Biology, 33(9), 823–837. https://doi.org/10.1071/FP06055
Manschadi, A. M., Hammer, G. L., Christopher, J. T., & deVoil, P. (2008). Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant and Soil, 303(1), 115–129. https://doi.org/10.1007/s11104-007-9492-1
Mohammadi, R. (2024). Effects of post-flowering drought and supplemental irrigation on grain yield and agro-phenological traits in durum wheat. European Journal of Agronomy, 156, 127180. https://doi.org/https://doi.org/10.1016/j.eja.2024.127180
Nagel, K. A., Lenz, H., Kastenholz, B., Gilmer, F., Averesch, A., Putz, A., Heinz, K., Fischbach, A., Scharr, H., Fiorani, F., Walter, A., & Schurr, U. (2020). The platform GrowScreen-Agar enables identification of phenotypic diversity in root and shoot growth traits of agar grown plants. Plant Methods, 16(1), 89. https://doi.org/10.1186/s13007-020-00631-3
Najafi, M. S., & Alizadeh, O. (2023). Climate zones in Iran. Meteorological Applications, 30(5), e2147. https://doi.org/https://doi.org/10.1002/met.2147
Ober, E. S., Alahmad, S., Cockram, J., Forestan, C., Hickey, L. T., Kant, J., Maccaferri, M., Marr, E., Milner, M., Pinto, F., Rambla, C., Reynolds, M., Salvi, S., Sciara, G., Snowdon, R. J., Thomelin, P., Tuberosa, R., Uauy, C., Voss-Fels, K. P., … Watt, M. (2021). Wheat root systems as a breeding target for climate resilience. Theoretical and Applied Genetics, 134(6), 1645–1662. https://doi.org/10.1007/s00122-021-03819-w
Palta, J. A., Chen, X., Milroy, S. P., Rebetzke, G. J., Dreccer, M. F., & Watt, M. (2011). Large root systems: are they useful in adapting wheat to dry environments? Functional Plant Biology, 38(5), 347–354. https://doi.org/10.1071/FP11031
Pinto, R. S., & Reynolds, M. P. (2015). Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat. Theoretical and Applied Genetics, 128(4), 575–585. https://doi.org/10.1007/s00122-015-2453-9
Pour-Aboughadareh, A., Yousefian, M., Moradkhani, H., Moghaddam Vahed, M., Poczai, P., & Siddique, K. H. M. (2019). iPASTIC: An online toolkit to estimate plant abiotic stress indices. Applications in Plant Sciences, 7(7), 1–6. https://doi.org/10.1002/aps3.11278
Ranjan, A., Sinha, R., Singla-Pareek, S. L., Pareek, A., & Singh, A. K. (2022). Shaping the root system architecture in plants for adaptation to drought stress. Physiologia Plantarum, 174(2), e13651. https://doi.org/https://doi.org/10.1111/ppl.13651
Richard, C. A., Hickey, L. T., Fletcher, S., Jennings, R., Chenu, K., & Christopher, J. T. (2015). High-throughput phenotyping of seminal root traits in wheat. Plant Methods 2015 11:1, 11(1), 1–11. https://doi.org/10.1186/S13007-015-0055-9
Robinson, H., Kelly, A., Fox, G., Franckowiak, J., Borrell, A., & Hickey, L. (2018). Root architectural traits and yield: exploring the relationship in barley breeding trials. Euphytica, 214(9), 151. https://doi.org/10.1007/s10681-018-2219-y
Senapati, N., Stratonovitch, P., Paul, M. J., & Semenov, M. A. (2019). Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. Journal of Experimental Botany, 70(9), 2549–2560. https://doi.org/10.1093/jxb/ery226
Severini, A. D., Wasson, A. P., Evans, J. R., Richards, R. A., & Watt, M. (2020). Root phenotypes at maturity in diverse wheat and triticale genotypes grown in three field experiments: Relationships to shoot selection, biomass, grain yield, flowering time, and environment. Field Crops Research, 255, 107870. https://doi.org/https://doi.org/10.1016/j.fcr.2020.107870
Shazadi, K., Christopher, J. T., & Chenu, K. (2024). Does late water deficit induce root growth or senescence in wheat? Frontiers in Plant Science, 15(June), 1–14. https://doi.org/10.3389/fpls.2024.1351436
Sio-Se Mardeh, A., Ahmadi, A., Poustini, K., & Mohammadi, V. (2006). Evaluation of drought resistance indices under various environmental conditions. Field Crops Research, 98(2), 222–229. https://doi.org/https://doi.org/10.1016/j.fcr.2006.02.001
Tang, D., Chen, M., Huang, X., Zhang, G., Zeng, L., Zhang, G., Wu, S., & Wang, Y. (2023). SRplot: A free online platform for data visualization and graphing. PLoS ONE, 18(11 October), e0294236. https://doi.org/10.1371/journal.pone.0294236
Turner, N. C., & Nicolas, M. E. (1987). Drought resistance of wheat for light- textured soils in the mediterranean climate. In J. P. Srivastava, E. Porceddu, E. Acevedo, & S. Varma (Eds.), Drought Tolerance in Winter Cereals (pp. 203–216). John Wiley & Sons, Ltd.
Uga, Y., Ebana, K., Abe, J., Morita, S., Okuno, K., & Yano, M. (2009). Variation in root morphology and anatomy among accessions of cultivated rice (Oryza sativa L.) with different genetic backgrounds. Breeding Science, 59(1), 87–93. https://doi.org/10.1270/jsbbs.59.87
Vadez, V. (2014). Root hydraulics: The forgotten side of roots in drought adaptation. Field Crops Research, 165, 15–24. https://doi.org/https://doi.org/10.1016/j.fcr.2014.03.017
Wang, J. (2021). Recognizing the hidden half in wheat: root system attributes associated with drought tolerance Full-length cDNA library construction View project essential roles of SnRK2 in plants View project. Article in Journal of Experimental Botany. https://doi.org/10.1093/jxb/erab124
Wasson, A., Bischof, L., Zwart, A., & Watt, M. (2016). A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field. Journal of Experimental Botany, 67(4), 1033–1043. https://doi.org/10.1093/jxb/erv570
Wasson, A. P., Richards, R. A., Chatrath, R., Misra, S. C., Prasad, S. V. S., Rebetzke, G. J., Kirkegaard, J. A., Christopher, J., & Watt, M. (2012). Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany, 63(9), 3485–3498. https://doi.org/10.1093/jxb/ers111
Xie, Q., Mayes, S., & Sparkes, D. L. (2015). Carpel size, grain filling, and morphology determine individual grain weight in wheat. Journal of Experimental Botany, 66(21), 6715–6730. https://doi.org/10.1093/jxb/erv378
Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14(6), 415–421. https://doi.org/https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
Zamani, A., Emam, Y., & Edalat, M. (2024). Response of Bread Wheat Cultivars to Terminal Water Stress and Cytokinin Application from a Grain Phenotyping Perspective. Agronomy, 14(1), 182. https://doi.org/10.3390/agronomy14010182
Zampieri, M., Ceglar, A., Dentener, F., & Toreti, A. (2017). Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environmental Research Letters, 12(6), 64008. https://doi.org/10.1088/1748-9326/aa723b

Articles in Press, Accepted Manuscript
Available Online from 16 September 2025