Mapping Agricultural Drought Hazard in Iran

Authors
1 Department of Physical Geography, Faculty of geography and environmental planning, University of Sistan and Baluchestan
2 Department of Statistics, Faculty of Mathematics, Statistics and Computer Science, University of Sistan and Baluchestan
Abstract
The primary objective of this study is to develop a spatially explicit Agricultural Drought Hazard (ADH) map for Iran by integrating precipitation and soil moisture data. For this, two key datasets spanning 30 years (1987-2016) were utilized: monthly precipitation from 63 synoptic stations (Iran’s Meteorological Organization) and gridded (0.5°x0.5°) monthly soil moisture from the Climate Prediction Center (CPC). These were transformed into the Standardized Precipitation Index (SPI) and Standardized Soil Moisture Index (SSMI), respectively. A core quantitative finding is the regionally distinct correlation between SPI and SSMI: the strongest positive correlations were observed in Iran’s expansive dry climates (southern and eastern halves), while significantly weaker correlations characterized the more humid northern and western halves. This indicates a more rapid and direct propagation of meteorological drought to agricultural drought in arid zones. These standardized indices were then integrated to construct Iran’s ADH map. This map quantitatively classifies the central, southern, and southeastern regions as experiencing ‘high’ and ‘very high’ agricultural drought hazard. These findings provide a critical, data-driven tool for national and regional policymakers, offering improved insights for targeted drought mitigation and water resource management compared to single-indicator assessments, particularly crucial for Iran’s vulnerable agricultural sector.

Keywords

Subjects


1. Achite, M., O. Bazrafshan, O. M. Katipoğl, Z. Azhdari. 2023. “Evaluation of hydro-meteorological drought indices for characterizing historical droughts in the Mediterranean climate of Algeria.” Nat. Hazards. 118: 427–453.
2. Adnan, S., K. Ullah. 2020. “Development of drought hazard index for vulnerability assessment in Pakistan.” Nat. Hazards. 103: 2989–3010.
3. Adnan, S., K. Ullah, S. GAO. 2015. “Characterization of drought and its assessment over Sindh, Pakistan during 1951–2010.” J. Meteorol. Res. 29: 837–857.
4. Asakereh, H. 2011. Fundamentals of Statistical Climatology. [In Persian.] Zanjan University press, Zanjan, Iran.
5. Asrari, E., M. Masoudi, S. S. Hakimi. 2012. “GIS overlay analysis for hazard assessment of drought in Iran using Standardized Precipitation Index (SPI).” J. Ecol. Environ. 35: 323–329.
6. Avia, L. Q., E. Yulihastin, M. H. Izzaturrahim, R. Muharsyah, H. Satyawardhana, I. Sofiati, E. Nurfindarti, S. Gammamerdianti. 2023. “The spatial distribution of a comprehensive drought risk index in Java, Indonesia.” Kuwait J. Sci. 50(4): 753-760.
7. Berhail, S., O. M. Katipoğlu. 2023. “Comparison of the SPI and SPEI as drought assessment tools in a semi-arid region: case of the Wadi Mekerra basin (northwest of Algeria).” Theor. Appl. Climatol. 154: 1373-1393.
8. Bettahar, A, Ş. Şener. 2022. “Analysis of meteorological drought indices in the Wadi Righ area (southern Algeria).” Sustain. Water Resour. Manag. 8: 152.
9. Blauhut, V., L. Gudmundsson, K. Stahl. 2015. “Towards pan-European drought risk maps: quantifying the link between drought indices and reported drought impacts.” Environ. Res. Lett. 10: 14008.
10. Byun, H. R., D. A. Wilhite. (1999). “Objective quantification of drought severity and duration.” J. Clim. 12: 2747–2756.
11. Cao, S., Y. He, L. Zhang, Y. Chen, W. Yang, S. Yao, Q. Sun. 2021. “Spatio-temporal characteristics of drought and its impact on vegetation in the vegetation region of Northwest China.” Ecol. Indic. 133: 108420.
12. Chanda, K., R. Maity, A. Sharma, R. Mehrotra. 2014. Spatio-temporal variation of long-term drought propensity through reliability-resilience-vulnerability based drought management index. Water. Resour. Res. 50: 7662–7676.
13. Daneshvar, M. R. M., A. Bagherzadeh, M. Khosravi. 2012. “Assessment of drought hazard impact on wheat cultivation using standardized precipitation index in Iran.” Arab. J. Geosci. 6: 4463–4473.
14. Das, P. K., R. Das, D. K. Das, S. K. Midya, S. Bandyopadhyay, U. Raj. 2020. “Quantification of Agricultural Drought over Indian Region: A Multivariate Phenology-Based Approach.” Nat. Hazards, 101: 225–274.
15. De Martonne, M. 1909. “Traité de géographie physique – Climat – Hydrographic – Relief du sol – Biogéographie.” Paris : Li-brairie Armand Colin..
16. Erfurt, M., R. Glaser, V. Blauhut. 2019. “Changing impacts and societal responses to drought in southwestern Germany since 1800.” Reg. Environ. Change, 19: 2311–2323.
17. Fan, Y. and H. van den Dool. 2004. “Climate prediction center global monthly soil moisture data set at 0.5 degree resolution for 1948 to present.” J. Geophys. Res. 109(10): D10102.
18. Faridatul, M. I., B. Ahmed. 2020. “Assessing Agricultural Vulnerability to Drought in a Heterogeneous Environment: A Remote Sensing-Based Approach.” Remote. Sens. 12(20): 3363.
19. Free worlds maps. 2021. Iran Physical map. https://www.freeworldmaps.net/asia/iran/map.html
20. Gautam, S., A. Samantaray, M. Babbar-Sebens, M. Ramadas. 2023. “Characterization and Propagation of Historical and Projected Droughts in the Umatilla River Basin, Oregon, USA.” Adv. Atmos. Sci. 41: 247-262.
21. Ghorbani, H., A. A. Vali, H. Zarepour. 2019. Analysis of the Climatological Drought Trend Variations Using Mann-Kendall, Sen and Pettitt Tests in Isfahan Province. [In Persian.] Journal of Spatial Analysis Environmental Hazards, 6 (2), 129-146.
22. Hagenlocher, M., I. Meza, C. C. Anderson, A. Min, F. G. Renaud, Y. Walz, S. Siebert, Z. Sebesvari. 2019. “Drought vulnerability and risk assessments: state of the art, persistent gaps, and research agenda.” Environ. Res. Lett 14: 083002.
23. Kao, S. C., R. S. Govindaraj. 2010. “A copula-based joint deficit index for droughts.” J. Hydrol. 380(1–2): 121–134.
24. Katiraie-Boroujerdy, P. S., N. Nasrollahi, K. L. Hsu, S. Sorooshian. 2013. “Evaluation of satellite-based precipitation estimation over Iran.” J. Arid Environ. 97: 205-219.
25. Kim, H., J. Park, J. Yoo, T-W. Kim. 2015. “Assessment of drought hazard, vulnerability, and risk: a case study for administrative districts in South Korea.” J. Hydro-environment. Res. 9(1): 28–35.
26. Lin, W., C. Wen, Z. Wen, H. Gang. 2015. “Drought in Southwest China: A review.” Atmos. Ocean. Sci. Lett. 8: 339–344.
27. Mahmoudi, P., A. Rigi, M. Miri Kamak. 2019a. “A comparative study of precipitation-based drought indices with the aim of selecting the best index for drought monitoring in Iran.” Theor. Appl. Climatol. 137: 3123–3138.
28. Mahmoudi, P., M. Hamidian Pour, M. Sanaei, N. Daneshmand. 2019b. “Investigating the Trends of Drought Severity Changes in Iran. In: Proceedings of International Conference on Climate Change, Impacts, Adaptation and Mitigation, 11 June, Kharzmi University, Tehran, Iran.
29. Mahmoudi, P., R. Maity, S. M. Amir Jahanshahi, K. Chanda. 2022. “Changing spectral patterns of long-term drought propensity in Iran through reliability–resilience–vulnerability-based Drought Management Index.” Int. J. Climatol. 42(8): 4147–4163.
30. McKee, T. B., N. J. Doesken, J. Kleist. 1993. “The Relationship of Drought Frequency and Duration to Time Scales.” Proceedings of the 8th Conference on Applied Climatology, 17–22 January 1993, Anaheim, CA. Boston, MA.
31. Modarres, R. 2007. “Streamflow drought time series forecasting.” Stochastic Environ. Res. Risk Assess. 21(3): 223–233.
32. Nasrollahi, M., H. Khosravi, A. Moghaddamnia, A. Malekian, S. shahid. 2018. “Assessment of drought risk index using drought hazard and vulnerability indices.” Arab. J. Geosci. 11: 606.
33. Natarajan, N., M. Vasudevan, S. A. Raja, K. Mohanpradaap, G. Sneha, S. J. Shanu. 2023. “assessment methodology for drought severity and vulnerability using precipitation-based indices for the arid, semi-arid and humid districts of Tamil Nadu, India.” Water Supply, 23(1): 54-79.
34. Nazaripour, H., M. Hamidianpour, M. Khosravi, M. Vazirimehr. 2023. “Variability of Drought Frequency and Intensity in Iran using SPEI.” [In Persian.] Journal of Water and Soil Science (JWSS), 26(4): 233-247
35. Palmer, W .C. 1965. “Meteorological Drought.” Research Paper No. 45. US Department of Commerce Weather Bureau, Washington D C, pp. 1-58.
36. Shahid, S., H. Behrawan. 2008. Drought risk assessment in the western part of Bangladesh. Nat. Hazards, 46(3):391–413.
37. Thiessen, A. H. 1911. “Precipitation averages for large areas.” Mon Weather Rev. 39: 1082–1084.
38. Vaghefi, S. A., M. Keykhai, F. Jahanbakhshi, J. Sheikholeslami, A. Ahmadi, H. Yong, K. C. Abbaspour. 2019. “The future of extreme climate in Iran.” Sci. Rep. 9: 1-11.
39. van den Dool, H., J. Huang, Y. Fan. 2003. “Performance and analysis of the constructed analogue method applied to US soil moisture applied over 1981–2001.” J. Geophys. Res. 108: 1–16.
40. Vicente-Serrano, S., S. Beguería, J. L. López-Moreno. 2010. “A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index.” J. Clim. 23(7): 1696-1718.
41. Wilhite, D. A. 2005. “Drought.” In: Oliver, J.E. (eds) Encyclopedia of World Climatology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht.
42. Yu, J., J. Lim, K. S. Lee. 2018. Investigation of drought-vulnerable regions in North Korea using remote sensing and cloud computing climate data. Environ. Monit. Assess. 190: 126.

Articles in Press, Accepted Manuscript
Available Online from 16 September 2025