Black, Q12, and Titicaca Quinoa Protein Isolate-Nutritional and Physicochemical Properties

Authors
1 Department of Food Science and Technology, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Fars
2 Professor of Food Hygiene, Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
Abstract
Quinoa is a pseudocereal plant that has been cultivated in Iran recently. The purpose of this research was to evaluate its properties for use in food. Quinoa protein isolates (QPIs) were isolated from Iranian quinoa seed cultivar (QS) varieties (Black-QS, Q12-QS, and Titicaca-QS). The Black-QPI and Titicaca (T)-QPI had a higher protein content (87.30±1.96, 87.80±1.61% w/w), respectively. The results showed foaming capacity (40.54%), stability (65.26% in 60 min), and oil absorption (3.02 ml/g) were significantly (p ≤ 0.05) was higher in Black-QPI. Textural parameters revealed that viscosity and shear stress were higher in Q12-QS than others. The amino acid profile showed that T-QS had a well-balanced profile with the highest content of tryptophan (8.23 %). Consequently, the suitable nutritional and functional properties of Titicaca protein make it an appropriate candidate for use as a safe food additive.

Keywords

Subjects


Abugoch, L. E., Romero, N., Tapia, C. A., Silva, J., & Rivera, M. 2008. Study of some physicochemical and functional properties of quinoa (Chenopodium quinoa Willd) protein isolates. J Agri Food Chem, 56(12), 4745-4750. https://doi.org/10.1021/jf703689u
Alrosan, M., Tan, T.-C., Easa, A. M., Gammoh, S., & Alu'datt, M. H. 2022. Recent updates on lentil and quinoa protein-based dairy protein alternatives: Nutrition, technologies, and challenges. Food Chem, 132386.https://doi.org/10.1016/j.foodchem.2022.132386
Alvarez-Jubete, L., Arendt, E., & Gallagher, E. 2009. Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int J Food Sci Nutr, 60(sup4), 240-257.
https://doi.org/10.1080/09637480902950597
Anitha, S., Govindaraj, M., & Kane‐Potaka, J. 2020. Balanced amino acid and higher micronutrients in millets complements legumes for improved human dietary nutrition. Cereal Chem, 97(1), 74-84.
https://doi.org/10.1002/cche.10227
Ashraf, S., Saeed, S. M. G., Sayeed, S. A., & Ali, R. 2012. Impact of Microwave Treatment on the Functionality of Cereals and Legumes. Int J Agri Biol, 14(3),365-370.
Craine, Evan B., and Kevin M. Murphy. 2020. Seed composition and amino acid profiles for quinoa grown in Washington State. Front. Nutr. 7(126),1-16. https://doi.org/10.3389/fnut.2020.00126
Dakhili, S., Abdolalizadeh, L., Hosseini, S. M., Shojaee-Aliabadi, S., & Mirmoghtadaie, L. 2019. Quinoa protein: Composition, structure and functional properties. Food Chem, 299, 125161.
https://doi.org/10.1016/j.foodchem.2019.125161
Dini A, Rastrelli L, Saturnino P and Schettino O. 1992. A compositional study of Chenopodium quinoa seeds. Nahrung, 36, 400–404. https://doi.org/10.1002/food.19920360412

Elsohaimy, S., Refaay, T., & Zaytoun, M. 2015. Physicochemical and functional properties of quinoa protein isolate. Ann Agri Sci, 60(2), 297-305.
https://doi.org/10.1016/j.aoas.2015.10.007
Escuredo, O., González Martín, M. I., Wells Moncada, G., Fischer, S., & Hernández Hierro, J. M. 2014. Amino acid profile of the quinoa (Chenopodium quinoa Willd.) using near infrared spectroscopy and chemometric techniques. J Cereal Sci, 60(1), 67-74.
https://doi.org/10.1016/j.jcs.2014.01.016
Filho, A. M. M., Pirozi, M. R., Borges, J. T. D. S., Pinheiro Sant'Ana, H. M., Chaves, J. B. P., & Coimbra, J. S. D. R. 2017. Quinoa: Nutritional, functional, and antinutritional aspects. Crit. Rev. Food Sci. Nutr., 57(8), 1618-1630.
Ghumman, A., Mudgal, S., Singh, N., Ranjan, B., Kaur, A., & Rana, J. C. 2021. Physicochemical, functional and structural characteristics of grains, flour and protein isolates of Indian quinoa lines. Food Res Int, 140, 109982.
https://doi.org/10.1016/j.foodres.2020.109982
Gómez, M. J. R., Prieto, J. M., Sobrado, V. C., & Magro, P. C. 2021. Nutritional characterization of six quinoa (Chenopodium quinoa Willd) varieties cultivated in Southern Europe. J Food Compos Anal, 99, 103876.
https://doi.org/10.1016/j.jfca.2021.103876
Gonzalez, J. A., Konishi, Y., Bruno, M., Valoy, M., & Prado, F. E. (2012). Interrelationships among seed yield, total protein and amino acid composition of ten quinoa (Chenopodium quinoa) cultivars from two different agroecological regions. J. Sci. Food Agric, 92(6), 1222-1229. https://doi.org/10.1002/jsfa.4686
Gupta, A., Sharma, S., & Surasani, V. K. R. J. 2021. Quinoa protein isolate supplemented pasta: Nutritional, physical, textural and morphological characterization. LWT- Food Sci Technol, 135, 110045.https://doi.org/10.1016/j.lwt.2020.110045
Jan, K. N., Panesar, P. S., & Singh, S. 2018. Textural, in vitro antioxidant activity and sensory characteristics of cookies made from blends of wheat-quinoa grown in India. J Food Process Preserv, 42(3), e13542.https://doi.org/10.1111/jfpp.13542
James, L. E. A. 2009. Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Adv. Food Nutr. Res, 58, 1-31.https://doi.org/10.1016/S1043-4526(09)58001-1
Lomakina, K., & Mikova, K. 2006. A study of the factors affecting the foaming properties of egg white–a review. Czech J. Food Sci, 24(3), 110-118.
Marmouzi, I., El Madani, N., Charrouf, Z., Cherrah, Y., & Faouzi, M. E. A. 2015. Proximate analysis, fatty acids and mineral composition of processed Moroccan Chenopodium quinoa Willd. and antioxidant properties according to the polarity. Phytothérapie, 13(2), 110-117.
https://doi.org/10.1007/s10298-015-0931-5
Martínez-Villaluenga, C., Peñas, E., & Hernández-Ledesma, B. 2020b. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem Toxicol, 137, 111178.https://doi.org/10.1016/j.fct.2020.111178
Mir, N. A., Riar, C. S., & Singh, S. 2021a. Improvement in the functional properties of quinoa (Chenopodium quinoa) protein isolates after the application of controlled heat-treatment: Effect on structural properties. Food Struc, 28, 100189.
https://doi.org/10.1016/j.foostr.2021.100189
Nascimento, A. C., Mota, C., Coelho, I., Gueifão, S., Santos, M., Matos, A. S and et al. 2014. Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: Proximates, minerals and trace elements. Food Chem, 148, 420-426.
https://doi.org/10.1016/j.foodchem.2013.09.155
Navruz-Varli, S., & Sanlier, N. (2016). Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). J. Cereal Sci, 69, 371-376. https://doi.org/10.1016/j.jcs.2016.05.004
Nowak, V., Du, J., & Charrondière, U. R. 2016. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem, 193, 47-54.
https://doi.org/10.1016/j.foodchem.2015.02.111
Ogungbenle, H. 2003. Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. Int J Food Sci Nutr, 54(2), 153-158.https://doi.org/10.1080/0963748031000084106
Ogungbenle, H. N., Oshodi, A. A., & Oladimeji, M. O. 2009. The proximate and effect of salt applications on some functional properties of quinoa (Chenopodium quinoa) flour. Pak. J. Nutr, 8(1), 49-52.
Palombini, S. V., Claus, T., Maruyama, S. A., Gohara, A. K., Souza, A. H. P., Souza, N and et al. 2013. Evaluation of nutritional compounds in new amaranth and quinoa cultivars. Food Sci Technol, 33, 339-344. https://doi.org/10.1590/S0101-20612013005000051
Panozzo, A., Manzocco, L., Calligaris, S., Bartolomeoli, I., Maifreni, M., Lippe, G., & Nicoli, M. C. 2014. Effect of high pressure homogenisation on microbial inactivation, protein structure and functionality of egg white. Food Res Int, 62, 718-725. https://doi.org/10.1016/j.foodres.2014.04.051
Razzeto, G. S., Uñates, M. A., Moreno, J. E. R., López, R. V. L., Aguilar, E. G., Sturniolo, H., & Escudero, N. L. 2019. Evaluation and comparative study of the nutritional profile and antioxidant potential of new quinoa varieties. Asian J Agri Hortic Res, 1-11.
https://doi.org/10.9734/ajahr/2019/v3i330002
Reséndiz, A. I. S., Aburto, A. E., Ayme, V. A., & Chuck‐Hernández, C. 2019. Propiedades estructurales, evaluación funcional y digestibilidad proteica in-vitro de aislados de quinoa negra y amarilla (Chenopodium petiolare). CyTA: J Food, 17(1), 864-872.
https://doi.org/10.1080/19476337.2019.1669714
Ruiz, G. A., Opazo-Navarrete, M., Meurs, M., Minor, M., Sala, G., van Boekel, M and et al, 2016. Denaturation and in vitro gastric digestion of heat-treated quinoa protein isolates obtained at various extraction pH. Food Biophys, 11(2), 184-197.
https://doi.org/10.1007/s11483-016-9429-4
Saavedra, P. d. L., & Carmen Valdez-Arana, J. d. 2021. Nutritional and functional evaluation of 17 quinoa (Chenopodium quinoa willd) accessions cultivated in the Andean area of Peru. Scientia Agropecuaria, 12(1), 15-23. https://doi.org/10.17268/sci.agropecu.2021.002
Sekhavatizadeh, S. S., Hosseinzadeh, S., & Mohebbi, G. 2021. Nutritional, antioxidant properties and polyphenol content of quinoa (Chenopodium quinoa willd) cultivated in Iran. Futur. Food, 9(2), 1-12. https://doi.org/10.17170/kobra-20210216325
Shahbaz, M., Raza, N., Islam, M., Imran, M., Ahmad, I., Meyyazhagan, A and et al. 2022. The nutraceutical properties and health benefits of pseudocereals: a comprehensive treatise. Crit Rev Food Sci Nutr, 1-13. https://doi.org/10.1080/10408398.2022.2071205
Shaviklo, G. R., Thorkelsson, G., Arason, S., & Sveinsdottir, K. 2012. Characteristics of freeze-dried fish protein isolated from saithe (Pollachius virens). J Food Sci Technol, 49(3), 309-318.
https://doi.org/10.1007/s13197-011-0285-4
Sissons, M., Cutillo, S., Marcotuli, I., & Gadaleta, A. 2021. Impact of durum wheat protein content on spaghetti in vitro starch digestion and technological properties. J Cereal Sci, 98, 103156.
https://doi.org/10.1016/j.jcs.2020.103156
Steffolani, M. E., Villacorta, P., Morales‐Soriano, E. R., Repo‐Carrasco, R., León, A. E., & Pérez, G. T. 2016. Physicochemical and functional characterization of protein isolated from different quinoa varieties (Chenopodium quinoa Willd.). Cereal Chem, 93(3), 275-281.
https://doi.org/10.1094/CCHEM-04-15-0083-R
Roy, S., Rathod, G., & Amamcharla, J. 2025. Viscosity. In Plant-Based Proteins (pp. 379-387). Humana, New York, NY. https://doi.org/10.1007/978-1-0716-4272-6_30
Tang, H., Watanabe, K., & Mitsunaga, T. 2002. Characterization of storage starches from quinoa, barley and adzuki seeds. Carbohydr. Polym, 49(1), 13-22.https://doi.org/10.1016/S0144-8617(01)00292-2

Vega‐Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martínez, E. A. 2010. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. J Sci Food Agri, 90(15), 2541-2547. https://doi.org/10.1002/jsfa.4158
Wang, L., Dong, J. l., Zhu, Y. y., Shen, R. l., Wu, L. g., & Zhang, K. y. (2021). Effects of microwave heating, steaming, boiling and baking on the structure and functional properties of quinoa (Chenopodium quinoa Willd.) protein isolates. Int. J. Food Sci. Technol, 56(2), 709-720.
https://doi.org/10.1111/ijfs.14706
Yolandani, Y., Ma, H., Li, Y., Liu, D., Zhou, H., Wan, Y., Zhao, X. and Liu, X. 2023. Ultrasound-Assisted Limited Enzymatic Hydrolysis of High Concentrated Soy Protein Isolate: Alterations on the Functional Properties and its Relation with Hydrophobicity and Molecular Weight. Available at SSRN 4374106.

Articles in Press, Accepted Manuscript
Available Online from 16 September 2025