Optimizing Little Millet and Red Gram Mixtures to Improve the System Productivity and Soil Fertility of Rain-Dependent Alfisol of Semi-Arid India

Document Type : Original Research

Authors
1 Department of Soils and Environment, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai - 625104, Tamil Nadu, India.
2 Centre of Excellence in Millets, Tamil Nadu Agricultural University, Athiyandal - 606603, Tamil Nadu, India.
3 Agricultural College and Research Institute, Tamil Nadu Agricultural University, Kudimiyanmalai - 625104, Tamil Nadu, India.
4 Department of Agronomy, Water Technology Center, Tamil Nadu Agricultural University, Coimbatore - 641003, Tamil Nadu, India.
Abstract
The vagaries of monsoon rains severely affect the growth and yield of little millet (Panicum sumatrense) in semi-arid India. Continuous sole cultivation of little millet depletes soil nutrients, reduces crop productivity, and fails to ensure a stable income for farmers. A crop mixer is an alternate option to cope with climate variability and sustain soil fertility in the sole crop little millet areas. Among crops, pulse crops are a viable mixer for improving soil fertility, productivity and farmers' net income. Field studies were conducted in 2016, 2017, and 2018 at the Dryland Agricultural Research Station, India. Little millet was raised as the main crop, with red gram intercropped in ratios of 4:1, 6:2, and 8:2. Black gram, moth bean, and horse gram were sequentially cultivated after the little millet harvest. Biometric, yield attributes and yield, soil nutrients and nutrient uptake were measured. Intercropping of little millet and redgram in a 4:1 combination recorded higher grain yield (511 kg ha-1) and straw yield (1632 kg ha-1) of little millet. Similarly, little millet grain equivalent yield and production efficiency were also higher (730 kg ha-1 and 4.5 kg ha-1 d-1) in the 4:1 combination with sequential horse gam. Regarding soil fertility, a 4:1 combination with sequential horse gram resulted in significant nitrogen build-up (157.3 kg. ha-1) and phosphorus (9.7 kg ha-1) and potassium uptake (37.6 kg ha-1). Intercropping red gram with little millet at a 4:1 ratio, followed by sequential planting of horse gram, enhances rainfed little millet pulse productivity and improves soil fertility in semi-arid Alfisol.

Keywords

Subjects


Adjei-Nsiah, Samuel, B. U. Alabi, J. K. Ahiakpa, & F. Kanampiu. (2018). Response of grain legumes to phosphorus application in the guinea savanna agro-ecological zones of Ghana. Agronomy Journal 110(3):1089. doi: 10.2134/agronj2017.11.0667
Ashraf, M., M. Ashfaq, & M. Y. Ashraf. (2002). Effects of increased supply of potassium on growth and nutrient content in pearl millet under water stress. Biologia Plantarum 45(1): 141-144. DOI: https://doi.org/10.1023/A:1015193700547
Bremner, J.M., & C.S. Mulvaney. (1982). Salicylic acid-thiosulphate modification of Kjeldahl method to include nitrate and nitrite. Agronomy 9:621-622.
Caballero, R., E. L.Goicoechea, & P.J. Hernaiz. (1995). Forage yields and quality of common vetch and oat sown at varying seeding ratios and seeding rates of vetch. Field crops research 41(2): 135-140. doi.org/10.1016/0378-4290(94)00114-R.
Chalka, M. K., & V. Nepalia. (2006). Nutrient uptake appraisal of maize intercropped with legumes and associated weeds under the influence of weed control. Indian Journal of Agricultural Research 40(2): 6-91.
Eliazer Nelson, A. R. L., K. Ravichandran, & U. Antony. (2019). The impact of the Green Revolution on indigenous crops of India. Journal of Ethnic Foods. 6(1):1-10.https://doi.org/10.1186/s42779-019-0011-9
Entz, M. H., V.S. Baron, P.M. Carr, D. W. Meyer, S.R. Smith Jr, & W. P. McCaughey. (2002). Potential of forages to diversify cropping systems in the northern Great Plains. Agronomy Journal 94(2): 240-250. doi.org/10.2134/agronj2002.2400.
Gadedjisso-Tossou, A., K. I. Adjegan, & A. K. M. Kablan. (2021). Rainfall and Temperature Trend Analysis by Mann–Kendall Test and Significance for Rainfed Cereal Yields in Northern Togo. Sci 3(1):17. doi.org/10.3390/sci3010017.
Gan, Y., C. Hamel, J. T. O’Donovan, H. Cutforth, R. P. Zentner, C. A. Campbell, & L. Poppy. (2015). Diversifying crop rotations with pulses enhances system productivity. Scientific reports 5(1): 1-14. https://doi.org/10.1038/srep14625
Ganeshamurthy, A., M. Ali, & C. Rao. (2006). Role of pulses in sustaining soil health and crop production. Indian Journal of Fertilisers 1:29.
Ghanbari, A., M. Dahmardeh, B. A. Siahsar, & M. Ramroudi. (2010). Effect of maize (Zea mays L.)-cowpea (Vigna unguiculata L.) intercropping on light distribution, soil temperature and soil moisture in arid environment. JFAE 8: 102-108. ISSN: 1459-0255
Gomez, KA., & A. A. Gomez. (1984). Statistical procedures for agricultural research, John Wiley & Sons. ISBN: 0-471-87092-7.
Hirota, I., T. Sakuratani, T. Sato, H. Higuchi, & E. Nawata. (2004). A split-root apparatus for examining the effects of hydraulic lift by trees on the water status of neighbouring crops. Agroforestry Systems 60:181-187. doi.org/10.1023/B:AGFO.0000013293.77907.64.
Jamwal, J. S. (2001). Productivity and economics of different maize (Zea mays) based crop sequences under dryland conditions. Indian Journal of Agronomy, 44(4), 601–604.
Jyoti, B., & S. K. Yadav. (2012). Comparative study on biochemical parameters and antioxidant enzymes in a drought tolerant and a sensitive variety of horsegram (Macrotyloma uniflorum) under drought stress. American Journal of Plant Physiology 7(1):17-29. DOI : 10.3923/ajpp.2012.17.29.
Knudsen, D., G. Peterson & P. Pratt. (1983). Lithium, sodium, & potassium. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties 9:225-246. doi.org/10.2134/agronmonogr9.2.2ed.c13.
Kumar, A., V. Tomer, A. Kaur, V. Kumar, & K. Gupta. (2018). Millets: a solution to agrarian and nutritional challenges. Agriculture & food security 7(1): 1-15..https://doi.org/10.1186 /s40066-018-0183-3
Lal, B., P. Gautam, B. B. Panda, R. Raja, T. Singh, R. Tripathi, & A. K. Nayak. (2017). Crop and varietal diversification of rainfed rice based cropping systems for higher productivity and profitability in Eastern India. PLoS One 12(4):e0175709.doi.org/10.1371/journal.pone.0175709.
Layek, J., B. G. Shivakumar, D.S. Rana, S. Munda, K. Lakshman, A. Das, & Ramkrushna, G. I. (2014). Soybean–cereal intercropping systems as influenced by nitrogen nutrition. Agronomy Journal, 106(6), 1933-1946. doi.org/10.2134/agronj13.0521.
Li, L., S. M. Li, J. H. Sun, L. L. Zhou, X. G. Bao, H.G. Zhang, & F. S. Zhang. (2007). Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences 104(27):11192-11196. doi.org/10.1073/pnas.0704591104.
Li, Y. Y., C. B. Yu, X. Cheng, C. J. Li, J. H. Sun, F. S. Zhang, & L. Li. (2009). Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean. Plant and Soil 323(1):295-308.doi: 10.1007/s11104-009-9938-8.
Maitra, S., A. Hossain, M. Brestic, M. Skalicky, P. Ondrisik, H. Gitari, & M. Sairam. (2021). Intercropping-A low input agricultural strategy for food and environmental security. Agronomy 11(2):343. doi.org/10.3390/agronomy11020343.
Maitra, S., & T. Shankar. (2019). Agronomic management in little millet (Panicum sumatrense L.) for enhancement of productivity and sustainability. International Journal of Dental and Medical Specialt 6:91-96. DOI:10.30954/2347-9655.02.2019.9.
Meena, R. S., R. S. Yadav, H. Meena, S. Kumar, Y. K. Meena, & A. Singh. (2015). Towards the current need to enhance legume productivity and soil sustainability worldwide: a book review. DOI:10.1016/j.jclepro.2015.05.002.
Mhango, W. G., S. Snapp, & G. Y. Kanyama-Phiri. (2017). Biological nitrogen fixation and yield of pigeonpea and groundnut: quantifying response on smallholder farms in northern Malawi. African Journal of Agricultural Research 12(16):1385-1394.
Mohan, V., R. Unnikrishnan, S. Shobana, M. Malavika, R. M. Anjana, & V. Sudha. (2018). Are excess carbohydrates the main link to diabetes & its complications in Asians. The Indian journal of medical research 148(5):531. doi: 10.4103/ijmr.IJMR_1698_18.
Mugwe, J., D. N. Mugendi, M. Mucheru-Muna, & J. B. Kung’u. (2011). Soil inorganic N and N uptake by maize following application of legume biomass, tithonia, manure and mineral fertilizer in Central Kenya. In Innovations as Key to the Green Revolution in Africa 605-616. Springer, Dordrecht. doi.org/10.1007/978-90-481-2543-2_62.
Mwila, M., B. Mhlanga & C. Thierfelder. (2021). Intensifying cropping systems through doubled-up legumes in Eastern Zambia. Scientific reports 11(1):1-13. doi.org/10.1038/s41598-021-87594-0.
Nadeem, M., J. Li, M. Yahya, A. Sher, C. Ma, X. Wang & L. Qiu. (2019). Research progress and perspective on drought stress in legumes: a review. International journal of molecular sciences 20(10): 2541. doi.org/10.3390/ijms20102541.
Government of Tamil Nadu. GoT. (2020). Season and Crop Report 2019-20. Report No 11/2020. In: Statistics, D.o.E.a. (Ed.) 66-71.
Nelson, D. A., & L. Sommers. (1982). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties 9:539-579.
Olsen, S., & L. Sommers. (1982). Phosphorus. Á In: Page, AL, Miller, RH and Keeny, DR (eds), Methods of soil analysis. Part 2. Soil Sci. Soc. Am. Publ. Inc, 403Á430.
Prasad, S. K., & M. K. Singh. (2015). Horse gram-an underutilized nutraceutical pulse crop: a review. Journal of food science and technology 52(5):2489-2499. doi.org/10.1007/s13197-014-1312-z.
Rao, D. L. N., & D. Balachandar. (2017). Nitrogen inputs from biological nitrogen fixation in Indian agriculture. In The Indian Nitrogen Assessment 117-132. Elsevier. doi.org/10.1016/B978-0-12-811836-8.00008-2.
Rao, D. L. N., & H.S. Gill. (1995). Biomass production and nutrient recycling through litter from pigeonpea (Cajanus cajan L. Millsp.). Bioresource technology 54(2):123-128. doi.org/10.1016/0960-8524(95)00102-6.
Santi, C., D. Bogusz, & C. Franche. (2013). Biological nitrogen fixation in non-legume plants. Annals of botany 111(5):743-767. doi.org/10.1093/aob/mct048.
Senaratne, R., N. D. L. Liyanage, & D. S. Ratnasinghe. (1993). Effect of K on nitrogen fixation of intercrop groundnut and the competition between intercrop groundnut and maize. Fertilizer research 34(1):9-14.doi.org/10.1007/BF00749954.
Singh, P., K. J. Boote,M. D. M. Kadiyala, S. Nedumaran, S. K. Gupta, K. Srinivas, & M. C. S. Bantilan. (2017). An assessment of yield gains under climate change due to genetic modification of pearl millet. Science of the Total Environment 601:1226-1237. doi.org/10.1016/j.scitotenv.2017.06.002.
Subbiah, B., & G. Asija. (1956). A raped processor of determination of available nitrogen in nitrogen in soil.Curent Science 25: 259-260.
Tadele, Z. (2016). Drought adaptation in millets, InTech. DOI: 10.5772/61929
Uzoh, I. M., C. A. Igwe, C. B. Okebalama & O. O. Babalola. (2019). Legume-maize rotation effect on maize productivity and soil fertility parameters under selected agronomic practices in a sandy loam soil. Scientific reports 9(1):1-9.doi.org/10.1038/s41598-019-43679-5.
Vetriventhan, M., V. C. Azevedo, H. D. Upadhyaya, A. Nirmalakumari, J. Kane-Potaka, S. Anitha, & V. A. Tonapi. (2020). Genetic and genomic resources, and breeding for accelerating improvement of small millets: current status and future interventions. The Nucleus, 63(3), 217-239.
Wang, J., S. K. Vanga, R. Saxena, V. Orsat & V. Raghavan. (2018). Effect of climate change on the yield of cereal crops: a review. Climate 6(2):41.doi.org/10.3390/cli6020041.
Zhang, G., Z. Yang & S. Dong. (2011). Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. Field crops research 124(1):66-73. doi.org/10.1016/j.fcr.2011.06.006.
Zhao, Y., X. Liu, C. Tong & Y. Wu. (2020). Effect of root interaction on nodulation and nitrogen fixation ability of alfalfa in the simulated alfalfa/triticale intercropping in pots. Scientific reports 10(1):1-11. doi.org/10.1038/s41598-020-61234-5.