Exploiting the Efficacy of Entomopathogenic Fungi Against Common Floricultural Pests: A Focus on Aphids (Myzus persicae), Whiteflies (Bemisia tabaci B-biotype) and Western Flower Thrips (Frankliniella occidentalis)

Document Type : Original Research

Authors
1 Department of Agricultural Microbiology, College of Agriculture, University of Agricultural Sciences, GKVK, Bengaluru - 560065, Karnataka, India.
2 Department of Horticulture, College of Agriculture, University of Agricultural Sciences, GKVK, Bengaluru - 560065, Karnataka, India.
Abstract
This study evaluated the efficacy of Entomopathogenic Fungi (EPF) as biocontrol agents against aphids, whiteflies, and western flower thrips. The research employed a leaf disc bioassay with various conidia concentrations to determine Lethal Concentration (LC) and Time (LT) for pest eradication. Additionally, the study assessed the activity of cuticle-degrading enzymes produced by EPF (Chitinase, Protease, and Lipase) to understand their pathogenic mechanisms. Molecular identification using ITS region of 18S rDNA identified virulent isolates. Results indicated that four isolates, namely, ENPF-16, 24, 41, and 60 achieved significant mortality rates (95 to 100%) at a concentration of 1x108 conidia mL-1 after nine days. Akanthomyces sp. (ENPF-41) exhibited the highest enzyme activity, followed by Beauveria sp. (ENPF-60). The virulent fungal isolates were identified as Beauveria bassiana and Akanthomyces lecanii. Among EPF, Akanthomyces lecanii (MT997935) displayed greater virulence against all three test insects with lower LC50 and LT50 values compared to the other EPF. In summary, all fungal isolates induced mortality in the tested pests, but their effectiveness varied. Akanthomyces lecanii (MT997935) emerged as a promising biocontrol candidate due to its broad host range and strong virulence.

Keywords


1. Arthurs, S.P., Aristizábal, L.F., Avery, P.B., 2020. Evaluation of entomopathogenic fungi against chilli thrips, Scirtothrips dorsalis. J. Insect Sci., 13: 78-86.
2. Ashktorab, H., Cohen, R.J., 1992. Facile isolation of genomic DNA from filamentous fungi. Biotechniques., 13(2): 198-200.
3. Bai, N.S., Remadevi, O.K., Sasidharan, T.O., Balachander, M., Dharmarajan, P., 2012. Cuticle degrading enzyme production by some isolates of the entomopathogenic fungus, Metarhizium anisopliae (Metsch.). J. Biosci., 20: 25-32.
4. De Moraes, C.K., Schrank, A., Vainstein, M.H., 2003. Regulation of extracellular chitinases and proteases in the entomopathogen and acaricide Metarhizium anisopliae. Curr. Microbiol., 46(3): 205-215.
5. Demir, I., Koca, S., Soylu, E., Demirba, Z., Sevim, A., Virulence of entomopathogenic fungi against Plagiodera versicolora (Laicharting, 1781) (Coleoptera: Chrysomelidae). Afr. J. Agri. Res., 8(18): 2016-21.
6. Dhaliwal, G.S., Jindal, V., Mohindru, B., 2015. Crop losses due to insect pests: global and Indian scenario. Ind. J. Entomol., 77(2): 165-8.
7. Dhar, P., Kaur, G., 2009. Effects of carbon and nitrogen sources on the induction and repression of chitinase enzyme from Metarhizium anisopliae isolates. Ann. Microbiol., 59: 545-51.
8. Dhawan, M., Joshi, N., 2017. Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN. Braz. J. Microbiol., 48: 522-529.
9. Dong, T., Zhang, B., Jiang, Y., Hu, Q., 2016. Isolation and classification of fungal whitefly entomopathogens from soils of Qinghai-Tibet Plateau and Gansu Corridor in China. PLoS One., 11(5): 156-187.
10. Doyle, J.J., Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bulletin. 19: 11-15.
11. Eski, A.R.D.A.H.A.N., Bayramoglu, Z., Sonmez, E., Biryol, S., Demir, I., 2022. Evaluation of the Effectiveness of Entomopathogens for the Control of Colorado Potato Beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). J. Agric. Sci. Technol. 24(2): 393-405.
12. Finney, D.J., 1971. A statistical treatment of the sigmoid response curve. Probit analysis. Cambridge University Press, London. pp. 633-645.
13. Hirata, T., Takamatsu, S., 1996. Nucleotide sequence diversity of rDNA internal transcribed spacers extracted from conidia and cleistothecia of several powdery mildew fungi. Mycoscience, 37(3):283-288.
14. Hossain, T.M., Das, F.L., Marzan, L.W., Rahman, M.S., Anwar, M.N., 2006. Some properties of protease of the fungal strain Aspergillus flavus. Int. J. Agric. Biol., 8(2):162-174.
15. Kachhawa, D., 2017. Microorganisms as biopesticides. J. Entomol. Zool. Studies. 5: 468-473.
16. Khan, S., Guo, L., Shi, H., Mijit, M., Qiu, D., 2012. Bioassay and enzymatic comparison of six entomopathogenic fungal isolates for virulence or toxicity against green peach aphids Myzus persicae. Afr. J. Biotechnol., 11(77):14193-14203.
17. Kim, J.J., Jeong, G., Han, J.H., Lee, S., 2013. Biological control of aphid using fungal culture and culture filtrates of Beauveria bassiana. Mycobiol., 41(4):221-234.
18. Lacey, L.A., Wraight, S.P., Kirk, A.A., 2008. Entomopathogenic fungi for control of Bemisia tabaci biotype B: foreign exploration, research and implementation. Classical biological control of Bemisia tabaci in the United States-a review of interagency research and implementation. pp. 33-69.
19. Mondal, S., Baksi, S., Koris, A., Vatai, G., 2016. Journey of enzymes in entomopathogenic fungi. Pacific Science Review A: Nat. Sci. Eng. 18(2):85-99.
20. Nahar, P., Ghormade, V., Deshpande, M.V., 2004. The extracellular constitutive production of chitin deacetylase in Metarhizium anisopliae: possible edge to entomopathogenic fungi in the biological control of insect pests. J. Invertebrate Pathol., 85(2):80-88.
21. Nazir, T., Basit, A., Hanan, A., Majeed, M.Z., Qiu, D., 2018. In vitro pathogenicity of some entomopathogenic fungal strains against green peach aphid Myzus persicae (Homoptera: Aphididae). Agronomy., 9(1):7-18.
22. Ozcelik, F.G., Güven, O., 2015. Morphological and molecular characterization of natural entomopathogenic fungi. Asi. J. Agri. Food Sci., 3:178-188.
23. Pignede, G., Wang, H., Fudalej, F., Gaillardin, C., Seman, M., Nicaud, J.M., 2018. Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J. Bacteriol., 182(10):280-291.
24. Raheem, M.A., Al-Keridis, L.A., 2017. Virulence of three entomopathogenic fungi against whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in tomato crop. J. Entomol., 14(4):155-169.
25. Ramanujam, B., Rangeshwaran, R., Sivakmar, G., Mohan, M., Yandigeri, M.S., 2014. Management of insect pests by microorganisms. Proc. Natl. Acad. Sci., 80(2):455-471.
26. Ranadev, P., Nagaraju, K., Muthuraju, R., Kumari, R.V., 2023. Assessment of Entomopathogenic Fungi for the Biocontrol of Sucking Insect Pests: Pertaining to Red Spider Mites (Tetranychus urticae). Cur. J. App. Sci. Technol., 42(11):1-9.
27. Safavi, S.A., 2013. In vitro and in vivo induction, and characterization of beauvericin isolated from Beauveria bassiana and its bioassay on Galleria mellonella larvae. J. Agric. Sci. Technol. 15(1): 1-10.
28. Sani, I., Ismail, S.I., Abdullah, S., Jalinas, J., Jamian, S., Saad, N., 2020. A review of the biology and control of whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), with special reference to biological control using entomopathogenic fungi. Insects., 11(9): 619-627.
29. Sayed, S.M., Ali, E.F., Al-Otaibi, S.S., 2019. Efficacy of indigenous entomopathogenic fungus, Beauveria bassiana (Balsamo) Vuillemin, isolates against the rose aphid, Macrosiphum rosae L. (Hemiptera: Aphididae) in rose production. Egypt. J. Biol. Pest Control., 29:1-7.
30. Senthil Kumar, C.M., Jacob, T.K., Devasahayam, S., D’Silva, S., Kumar, N.K., 2015. Isolation and characterization of a Lecanicillium psalliotae isolate infecting cardamom thrips (Sciothrips cardamomi) in India. BioControl., 60:363-373.
31. Sharma, A., Sharma, S. Yadav, P.K., 2023. Entomopathogenic fungi and their relevance in sustainable agriculture: A review. Cogent Food & Agriculture, 9(1): 2180-257.
32. Sun, B., Zhang, X., Song, L., Zheng, L., Wei, X., Gu, X., Cui, Y., Hu, B., Yoshiga, T., Abd-Elgawad, M.M. Ruan, W., 2021. Evaluation of indigenous entomopathogenic nematodes in Southwest China as potential biocontrol agents against (Lepidoptera: Noctuidae). J. Nematol. 53(1):1-17.
33. Trinh, D.N., Ha, T.K., Qiu, D., 2020. Biocontrol potential of some entomopathogenic fungal strains against bean aphid Megoura japonica (Matsumura). Agriculture., 10(4):114.
34. VanDoorn, A., Vos, M.D., 2013. Resistance to sap-sucking insects in modern-day agriculture. Front. Plant. Sci., 4:222-238.
35. Vu, V.H., Hong, S., Kim, K., 2008. Selection of Entomopathogenic Fungi for Aphid Control. J. Biosci. Bioeng., 104: 498-505.
36. Zhang, X., Lei, Z., Reitz, S.R., Wu, S., Gao, Y., 2019. Laboratory and greenhouse evaluation of a granular formulation of Beauveria bassiana for control of western flower thrips, Frankliniella occidentalis. Insects., 10(2):58-67.