1. AL-Saleh, M. A. (2011). Pathogenic variability among five bacterial isolates of Xanthomonas campestris pv. vesicatoria, causing spot disease on tomato and their response to salicylic acid. J. Saudi Soc. Agric. Sci., 10(1): 47–51. https://doi.org/10.1016/J.JSSAS.2010.08.001
2. An, S. Q., Potnis, N., Dow, M., Vorhölter, F. J., He, Y. Q., Becker, A., Teper, D., Li, Y., Wang, N., Bleris, L. and Tang, J. L. (2020). Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol. Rev., 44(1): 1–32. https://doi.org/10.1093/femsre/fuz024
3. Araújo, E. R., Costa, J. R., Ferreira, M. A. S. V., and Quezado-Duval, A. M. (2012). Simultaneous detection and identification of the Xanthomonas species complex associated with tomato bacterial spot using species-specific primers and multiplex PCR. J. Appl. Microbiol., 113(6): 1479–1490. https://doi.org/10.1111/J.1365-2672.2012.05431.X
4. Astua-Monge, G., Minsavage, G. V., Stall, R. E., Davis, M. J., Bonas, U., and Jones, J. B. (2000). Resistance of tomato and pepper to T3 strains of Xanthomonas campestris pv. vesicatoria is specified by a plant-inducible avirulence gene. MPMI, 13(9): 911–921. https://doi.org/10.1094/MPMI.2000.13.9.911
5. Aydın, T., and Çelik, M. A. (2019). Altitudinal Zone L and Use Changes in Iğdir Plain Using Overlay Analysis Combined with Remote Sensing Methods. Journal of Remote Sensing and GIS, 8(263): 1–8. https://doi.org/10.35248/2469-4134.19.8.263
6. Aysan, Y., and Sahin, F. (2003). Occurrence of bacterial spot disease, caused by Xanthomonas axonopodis pv. vesicatoria, on pepper in the eastern Mediterranean region of Turkey. Plant Pathol., 52(6): 781–781. https://doi.org/10.1111/J.1365-3059.2003.00890.X
7. Bashan, Y., Azaizeh, M., Diab, S., Yunis, H., and Okon, Y. (1985). Crop loss of pepper plants artificially infected with Xanthomonas campestris pv. vesicatoria in relation to symptom expression. J. Crop Prot., 4(1): 77–84. https://doi.org/10.1016/0261-2194(85)90007-9
8. Basim, H., Basim, E., Jones, J. B., Minsavage, G. V., and Dickstein, E. R. (2004). Bacterial spot of tomato and pepper caused by Xanthomonas axonopodis pv. vesicatoria in the Western Mediterranean Region of Turkey. Plant Dis., 88(1): 85–85. https://doi.org/10.1094/PDIS.2004.88.1.85C
9. Bouzar, H., Jones, J. B., Minsavage, G. V., Stall, R. E., and Scott, J. W. (1994). Proteins unique to phenotypically distinct groups of Xanthomonas campestris pv. vesicatoria revealed by silver staining. Phytopathology, 84(1): 39–44. https://doi.org/10.1094/PHYTO-84-39
10. Büttner, D., and Bonas, U. (2010). Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol. Rev., 34(2): 107–133. https://doi.org/10.1111/J.1574-6976.2009.00192.X
11. Constantin, E. C., Cleenwerck, I., Maes, M., Baeyen, S., Van Malderghem, C., De Vos, P., and Cottyn, B. (2016). Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathol., 65(5): 792–806. https://doi.org/10.1111/PPA.12461
12. Cuppels, D. A., Louws, F. J., and Ainsworth, T. (2006). Development and Evaluation of PCR-Based diagnostic assays for the bacterial speck and bacterial spot pathogens of Tomato. Plant Dis., 90(4): 451–458. https://doi.org/10.1094/PD-90-0451
13. EFSA Panel on Plant Health. (2014). Scientific Opinion on the pest categorisation of Xanthomonas campestris pv. vesicatoria (Doidge) Dye. EFSA Journal, 12(6): 3720. https://doi.org/10.2903/J.EFSA.2014.3720
14. EPPO. (2013). PM 7/110 (1) Xanthomonas spp. (Xanthomonas euvesicatoria, Xanthomonas gardneri, Xanthomonas perforans, Xanthomonas vesicatoria) causing bacterial spot of tomato and sweet pepper. EPPO Bulletin, 43(1): 7–20. https://doi.org/10.1111/EPP.12018
15. Eryigit, G. (2016). Classical and molecular diagnostic of Xanthomonad species causing bacterial spot on tomato and pepper (in Turkish). Ege Univ, Graduate Scho. of Natural and App. Sci., Ms. Thesis, p 64.
16. Food and Agriculture Organization. (2022). Production of Tomatoes: top 10 producers. https://www.fao.org/faostat/en/#data/QCL/visualize, Accessed 27 March 2023
17. Gilbride, K. (2014). Molecular methods for the detection of waterborne pathogens. In H. Bridle (Ed.), Waterborne Pathogens: Detection Methods and Applications (pp. 231–290). Academic Press. https://doi.org/10.1016/B978-0-444-59543-0.00008-6
18. Hélias, V., Hamon, P., Huchet, E., Wolf, J. V.D., and Andrivon, D. (2012). Two new effective semiselective crystal violet pectate media for isolation of Pectobacterium and Dickeya. Plant Pathol., 61(2): 339–345. https://doi.org/10.1111/J.1365-3059.2011.02508.X
19. Jones, J. B., Jones, J. P., Stall, R. E., and Zitter, T. A. (1991). Compendium of tomato diseases. American Phytopathological Society. 73 p., https://doi.org/10.1201/9781482270952
20. Jones, J. B., Lacy, G. H., Bouzar, H., Stall, R. E., and Schaad, N. W. (2004). Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst. Appl. Microbiol., 27(6): 755–762. https://doi.org/10.1078/0723202042369884
21. Jones, J. B., Stall, R. E., and Bouzar, H. (1998). Diversity among xanthomonads pathogenic on pepper and tomato. Annu. Rev. Phytopathol., 36: 41–58. https://doi.org/10.1146/ANNUREV.PHYTO.36.1.41
22. Jones, J. B., Zitter, T. A., Momol, T. M., and Miller, S. A. (2013). Compendium of tomato diseases and pests. In Compendium of Tomato Diseases and Pests, Second Edition (2nd ed.). APS Press. https://doi.org/10.1094/9780890544341
23. Kayaaslan, Z., Belgüzar, S., Yanar, Y., and Mirik, M. (2023). Epidemiology of Xanthomonas euvesicatoria in Tokat province. Agronomy 13(3): 677. https://doi.org/10.3390/AGRONOMY13030677
24. Kebede, M., Timilsina, S., Ayalew, A., Admassu, B., Potnis, N., Minsavage, G. V., Goss, E. M., Hong, J. C., Strayer, A., Paret, M., Jones, J. B., and Vallad, G. E. (2014). Molecular characterization of Xanthomonas strains responsible for bacterial spot of tomato in Ethiopia. Eur. J. Plant Pathol., 140(4): 677–688. https://doi.org/10.1007/S10658-014-0497-3
25. Koenraadt, H., Van Betteray, B., Germain, R., Hiddink, G., Jones, J. B., Oosterhof, J., Rijlaarsdam, A., Roorda, P., and Woudt, B. (2009). Development of specific primers for the molecular detection of bacterial spot of pepper and tomato. Acta Hortic., 808: 99–102. https://doi.org/10.17660/ACTAHORTIC.2009.808.13
26. Kunitsky, C. J., Osterhout, G., and Sasser, M. (2006). Identification of microorganisms using fatty acid methyl ester (FAME) analysis and the MIDI Sherlock Microbial Identification System. Encyclopedia of Rapid Microbiological Methods, 3: 1–18.
27. Leite, R. P., Jones, J. B., Somodi, G. C., Minsavage, G. V., and Stall, R. E. (1995). Detection of Xanthomonas campestris pv. vesicatoria associated with pepper and tomato seed by DNA amplification. Plant Dis., 79(9): 917–922. https://doi.org/10.1094/PD-79-0917
28. Leyns, F., De Cleene, M., Swings, J. G., and De Ley, J. (1984). The host range of the genus Xanthomonas. Bot. Rev., 50(3): 308–356. https://doi.org/10.1007/BF02862635/METRICS
29. Lin, C. H., and Wang, J. F. (2010). Managing bacterial diseases of tomato. In R. Srinivasan (Ed.), Safer tomato production techniques: a field guide for soil fertility and pest management, 10(7): 61–68. AVRDC - The World Vegetable Center.
30. Mirik, M., and Aysan, Y. (2009). Detection of Xanthomonas axonopodis pv. vesicatoria in naturally infected pepper seeds in Turkey. J Plant Pathol., 91(2): 433–436.
31. Moretti, C., Amatulli, M. T., and Buonaurio, R. (2009). PCR-based assay for the detection of Xanthomonas euvesicatoria causing pepper and tomato bacterial spot. Lett Appl Microbiol., 49(4): 466–471. https://doi.org/10.1111/J.1472-765X.2009.02690.X
32. Morinière, L., Burlet, A., Rosenthal, E. R., Nesme, X., Portier, P., Bull, C. T., Lavire, C., Fischer-Le Saux, M., and Bertolla, F. (2020). Clarifying the taxonomy of the causal agent of bacterial leaf spot of lettuce through a polyphasic approach reveals that Xanthomonas cynarae Trébaol et al. 2000 emend. Timilsina et al. 2019 is a later heterotypic synonym of Xanthomonas hortorum Vauterin et al. 1995. Syst. Appl. Microbiol., 43(4): 126087. https://doi.org/10.1016/J.SYAPM.2020.126087
33. Narayanasamy, P. (2001). Plant pathogen detection and disease diagnosis (2nd ed.). CRP Press. p 544, https://doi.org/10.1201/9781482270952
34. Obradovic, A., Mavridis, A., Rudolph, K., Janse, J. D., Arsenijevic, M., Jones, J. B., Minsavage, G. V., and Wang, J. F. (2004). Characterization and PCR-based typing of Xanthomonas campestris pv. vesicatoria from peppers and tomatoes in Serbia. Eur. J. Plant Pathol., 110(3): 285–292. https://doi.org/10.1023/B:EJPP.0000019797.27952.1D/METRICS
35. Osdaghi, E., Jones, J. B., Sharma, A., Goss, E. M., Abrahamian, P., Newberry, E. A., Potnis, N., Carvalho, R., Choudhary, M., Paret, M. L., Timilsina, S., and Vallad, G. E. (2021). A centenary for bacterial spot of tomato and pepper. Mol. Plant Pathol., 22(12): 1500–1519. https://doi.org/10.1111/MPP.13125
36. Osdaghi, E., Taghavi, S. M., Hamzehzarghani, H., Fazliarab, A., and Lamichhane, J. R. (2017). Monitoring the occurrence of tomato bacterial spot and range of the causal agent Xanthomonas perforans in Iran. Plant Pathol., 66(6): 990–1002. https://doi.org/10.1111/ppa.12642
37. Padmanabhan, P., Cheema, A., and Paliyath, G. (2016). Solanaceous fruits including tomato, eggplant, and peppers. Encyclopedia of Food and Health, 24–32. https://doi.org/10.1016/B978-0-12-384947-2.00696-6
38. Pan, Y. B., Grisham, M. P., Burner, D. M., Legendre, B. L., and Wei, Q. (1999). Development of Polymerase Chain Reaction Primers Highly Specific for Xanthomonas albilineans, the Causal Bacterium of Sugarcane Leaf Scald Disease. Plant Dis., 83(3): 218–222. https://doi.org/10.1094/PDIS.1999.83.3.218
39. Potnis, N., Timilsina, S., Strayer, A., Shantharaj, D., Barak, J. D., Paret, M. L., Vallad, G. E., and Jones, J. B. (2015). Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Mol. Plant Pathol., 16(9): 907–920. https://doi.org/10.1111/MPP.12244
40. Sahin, F., and Miller, S. A. (1998). Resistance in Capsicum pubescens to Xanthomonas campestris pv. vesicatoria Pepper Race 6. Plant Dis., 82(7): 794–799. https://doi.org/10.1094/PDIS.1998.82.7.794
41. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note, 101: 1–6.
42. Schaad, N. W., Jones, J. B., and Chun, W. (2001). Laboratory Guide for Identification of Plant Pathogenic Bacteria. In N. W. Schaad, J. B. Jones, and W. Chun (Eds.), American Phytopathological Society Press (Third Edit, Vol. 50, Issue 6). St. Paul, Minnesota, 373p.
43. Stall, R. E., Beaulieu, C., Egel, D., Hodge, N. C., Leite, R. P., Minsavage, G. V., Bouzar, H., Jones, J. B., Alvarez, A. M., and Benedict, A. A. (1994). Two genetically diverse groups of strains are included in Xanthomonas campestris pv. vesicatoria. Int. J. Syst. Bacteriol., 44(1): 47–53. https://doi.org/10.1099/00207713-44-1-47/CITE/REFWORKS
44. Subedi, A., Kara, S., Aysan, Y., Minsavage, G. V., Timilsina, S., Roberts, P. D., Goss, E. M., and Jones, J. B. (2023). Draft genome sequences of 11 Xanthomonas strains associated with bacterial spot disease in Turkey. Access microbiol., 5(6) https://doi.org/10.1099/ACMI.0.000586.V3
45. Suk Park, D., Wook Hyun, J., Jin Park, Y., Sun Kim, J., Wan Kang, H., Ho Hahn, J., and Joo Go, S. (2006). Sensitive and specific detection of Xanthomonas axonopodis pv. citri by PCR using pathovar specific primers based on hrpW gene sequences. Microbiol. Res., 161(2): 145–149. https://doi.org/10.1016/J.MICRES.2005.07.005
46. Sunyar, B., Dönmez, M. F., and Çoruh, İ. (2021). Iğdır’da domates (Solanum Lycopersicon L.)’te hastalığa neden olan bakterilerin izolasyonu ve tanısı. Journal of Agriculture, 4(2):108–129. https://doi.org/10.46876/JA.1015781
47. Towsend, G. R., and Heuberger, J. W. (1943). Methods for estimating losses caused by disease in fungicide experiments. Plant dis. rep., 27: 340-343.
48. Türkiye İstatistik Kurumu. (2022). Bitkisel Üretim İstatistikleri: Domates Üretimi. https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111 anddil=1, Accessed 27 March 2023. (In Turkish)
49. Vauterin, L., Swings, J., Kersters, K., Gillis, M., Mew, T. W., Schroth, M. N., Palleroni, N. J., Hildebr and, D. C., Stead, D. E., Civerolo, E. L., Hayward, A. C., Maraite, H., Stall, R. E., Vidaver, A. K., and Bradbury, J. F. (1990). Towards an improved taxonomy of Xanthomonas. Int. J. Syst. Bacteriol., 40(3): 312–316. https://doi.org/10.1099/00207713-40-3-312/CITE/REFWORKS
50. Yaltı, S., and Aksu, H. (2019). Drought Analysis of Iğdır Turkey. TURJAF, 7(12): 2227–2232. https://doi.org/10.24925/TURJAF.V7I12.2227-2232.3004
51. Young, J. M., Park, D. C., Shearman, H. M., and Fargier, E. (2008). A multilocus sequence analysis of the genus Xanthomonas. Syst. Appl. Microbiol., 31(5): 366–377. https://doi.org/10.1016/J.SYAPM.2008.06.004