Relations between Some Phytochemical Properties and Fatty Acid Content of Pumpkin (Cucurbita pepo L.) Seeds

Document Type : Original Research

Authors
1 Department of Horticulture Faculty of Agriculture, Atatürk University, Erzurum, Türkiye .
2 Department of Horticulture Faculty of Agriculture, Ankara University, Ankara, Türkiye .
3 Department of Horticulture Faculty of Agriculture, Kilis 7 Aralik University, Kilis, Türkiye .
Abstract
Pumpkin (Cucurbita pepo L.) seeds are popular for their dietary and health benefits. However, there are limited data on the pathway between phytochemical and nutritional values of pumpkin seeds. For this purpose, the seeds of some Turkish pumpkin genotypes (NVS-1, NVS-2, KNY, KYS-1, KYS-2, BRS, EDR, and KRK) were analyzed for their amino acids, organic acids, fatty acids, and mineral content. The wide variation between seeds in organic acids (KYS-2, 8.105 ng µL-1; KRK, 1.939 ng µL-1) and amino acids (KYS-2, 32.99 nmol µL-1; KNY, 15.65 nmol µL-1) content was observed. C18:2n6 and C18:1n9 were the most predominant fatty acids in the seeds, whereas C16:1n7 was the least abundant. Considering the mineral contents, seeds were relatively rich in potassium (2560.3-6697.5 mg kg-1), phosphorus (529.8-1120.9 mg kg-1), and magnesium (426- 1124.5 mg kg-1). Moreover, the path diagram of phytochemical properties, nutritional value, and fatty acids of pumpkin seeds was determined. Consequently, the seeds of pumpkin cultivars were examined to find the best potential for a high nutritional value and contribution to the food industry.

Keywords

Subjects


1.       Akçalı, C. T. 2022. Increased Temperature and Shortened Grain Filling Duration Due to Sowing Dates Significantly Affect Fatty Acids Composition of Corn (Zea mays indentata Sturt.). J. Agric. Sci. Technol, 24: 1143-1153.
2.       Al-Khalifa, A. S. 1996. Physicochemical Characteristics, Fatty Acid Composition, and Lipoxygenase Activity of Crude Pumpkin and Melon Seed Oils. J. Agric. Food Chem., 44: 964–966.
3.       Amin, M. Z., Islam, T., Uddin, M. R., Uddin, M. J., Rahman, M. M. and Satter, M. A. 2019. Comparative Study on Nutrient Contents in the Different Parts of Indigenous and Hybrid Varieties of Pumpkin (Cucurbita maxima Linn.). Heliyon, 5: 1-5.
4.       AOAC. 1995. Official Methods of Analysis. 15th Edition, Association of Official Analytical Chemists, Washington DC.
5.       Aristoy, M. C. and Toldra, F. 1991. Deproteinization Techniques for HPLC Amino Acid Analysis in Fresh Pork Muscle and Dry-Cured Ham. J. Agric. Food Chem., 39: 1792-1795.
6.       Bellion, M., Courbot, M., Jacob, C., Blaudez, D. and Chalot, M. 2006. Extracellular and Cellular Mechanisms Sustaining Metal Tolerance in Ectomycorrhizal Fungi. FEMS Microbiol. Lett., 254: 173-181.
7.       Bhardwaj, H. L. and Hamama, A. A. 2009. Cultivar and Growing Location Effects on Oil Content and Fatty Acids in Canola Sprouts. HortSci., 44: 1628-1631.
8.       Bremner, J. M. 1996. Nitrogen Total. Part III: Chemical Method. In: “Methods of Soil Analysis”, (Ed.): Sparks D. L. 2nd Edition, Madison, WI, USA, PP. 1085–1122.
9.       Charaya, A., Chawla, N., Dhatt, A. S., Sharma, M., Sharma, S. and Kaur, I. 2023. Evaluation of Biochemical Composition of Hulled and Hull-Less Genotypes of Pumpkin Seeds Grown in Subtropical India. Heliyon, 9(1): 1-10.
10.    David, F., Sandra, P. and Wylie, P. L. 2003. Improving the Analysis of Fatty Acid Methyl Esters Using Retention Time Locked Methods and Retention Time Databases. URL http://www.chem.agilent.com/Library/applications/5988-5871EN.pdf. Accessed 11.03.14.
11.    De Mello, M. L. S., Narain, N. and Bora, P. S. 2000. Characterisation of Some Nutritional Constituents of Melon (Cucumis melo Hybrid AF-522) Seeds. Food Chem., 68: 411–414.
12.    Folch, J., Less, M. and Stanley, G. H. S. 1957. A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues. J. Biol. Chem., 226: 497–509.
13.    Fu, C., Shi, H. and Li, Q. 2006. A Review on Pharmacological Activities and Utilization Technologies of Pumpkin. Plant Foods Hum. Nutr., 61: 73-80.
14.    Glew, R. H., Glew, R. S., Chuang, L. T., Huang, Y. S., Millson, M., Constans, D. and Vanderjagt, D. J. 2006. Amino Acid, Mineral and Fatty Acid Content of Pumpkin Seeds (Cucurbita spp) and Cyperus esculentus Nuts in the Republic of Niger. Plant Foods Hum. Nutr.,61: 51-56.
15.    Gohari, A. A., Farhoosh, R. and Haddad, K. M. 2011. Chemical Composition and Physicochemical Properties of Pumpkin Seeds (Cucurbita pepo Subsp. pepo Var. Styriaka) Grown in Iran. J. Agric. Sci. Technol., 13: 1053-1063.
16.    Gunes, A., Turan, M., Gulluce, M. and Sahin, F. 2014. Nutritional Content Analysis of Plant Growth-Promoting Rhizobacteria Species. Eur. J. Soil Biol., 60: 88-97.
17.    Gossell-Williams, M., Davis, A. and O’Connor, N. 2006. Inhibition of Testosterone-Induced Hyperplasia of the Prostate of Sprague-Dawley Rats by Pumpkin Seed Oil. J. Med. Food, 9: 284-286.
18.    Halik, G., Lozicki, A., Wilczak, J., Arkuszewska, E. and Makarski, M. 2018. Pumpkin (Cucurbita maxima D.) Silage as a Feed that Improves Nutritional Properties of Cow’s Milk. J. Agric. Sci. Technol., 20: 1383-1394.
19.    Idouraine, A., Kohlhepp, E. A. And Weber, C.W. 1996. Nutrient Constituents from Eight Lines of Naked Seed Squash (Cucurbita pepo L.). J. Agric. Food Chem., 44: 721–724.
20.    Juranovic, I., Breinhoelder, P. and Steffan, I. 2003. Determination of Trace Elements in Pumpkin Seed Oils and Pumpkin Seeds by ICP-AES. J. Anal. At Spectrom., 18: 54–58.
21.    Kaymak, H. C. 2012. The Relationships between Seed Fatty Acids Profile and Seed Germination in Cucurbit Species. Žemdirbystė-Agriculture, 99: 299-304.
22.    Kaymak, H. C. 2014. Seed Fatty Acid Profiles: Potential Relations between Seed Germination under Temperature Stress in Selected Vegetable Species. Acta Sci. Pol. Hortorum Cultus, 13: 119-133.
23.    Kaymak, H. C., Akan, S. and Yarali Karakan, F. 2022. Pathway among Fatty Acid Profile, Seed Germination, and Vigor of Watermelon Cultivars. Emir. J. Food Agric., 34: 494-501.
24.    Kim, M. 2006. Determining Citrate in Fruit Juices Using a Biosensor with Citrate Lyase and Oxaloacetate Decarboxylase in a Flow Injection Analysis System. Food Chem., 99: 851-857.
25.    Mansour, E.H., Dworscha´k. E., Lugasi. A., Barna. E. Ä. and Gergely, A. 1993. Nutritive Value of Pumpkin (Cucurbita pepo Kakai 35) Seed Products. J. Sci. Food Agric., 61: 73-78.
26.    McCluskey, J., Herdman, L. and Skene, K. R. 2004. Iron Deficiency Induces Changes in Metabolism of Citrate in Lateral Roots and Cluster Roots of Lupinus albus. Physiol. Plant., 121: 586-594.
27.    Metcalfe, L. D. and Schmitz, A. A. 1961. The Rapid Preparation of Fatty Acid Esters for Gas Chromatographic Analysis. Anal. Chem., 33: 363–364.
28.    Murkovic, M., Piironen, V., Lampi, A. M., Kraushofer, T. and Sontag, G. 2004. Changes in Chemical Composition of Pumpkin Seeds during the Roasting Process for Production of Pumpkin Seed Oil. Part 1: Nonvolatile Compounds. Food Chem., 84: 359-365.
29.    Nawirska-Olszanska, A., Biesiada, A., Sokol-Letowska, A. and Kucharska, A. Z. 2014. Characteristics of Organic Acids in the Fruit of Different Pumpkin Species. Food Chem., 148: 415-419.
30.    Procida, G., Stancher, B., Cateni, F. and Zacchigna, M. 2013. Chemical Composition and Functional Characterisation of Commercial Pumpkin Seed Oil. J. Sci. Food Agric., 93: 1035-1041.
31.    Rezig, L., Chouaibi, M., Msaada, K. and Hamdi, S. 2012. Chemical Composition and Profile Characterisation of Pumpkin (Cucurbita maxima) Seed Oil. Ind. Crops Prod., 37: 82-87.
32.    Saavedra, L. and Barbas, C. 2003. Validated Capillary Electrophoresis Method for Small-Anions Measurement in Wines. Electrophoresis, 24: 2235-2243.
33.    Safdari-Monfared, N., Noor-Mohammadi, G., Shirani Rad, A. H. and Majidi Hervan, E. 2019. Effect of Sowing Date and Glycinebetaine on Seed Yield, Oil Content, and Fatty Acids in Rapeseed Cultivars. J. Agric. Sci. Technol., 21: 1495-1506.
34.    Song, J. F., Liu, C. Q., Li, D. J. and Gu, Z. X. 2013. Evaluation of Sugar, Free Amino Acid, and Organic Acid Compositions of Different Varieties of Vegetable Soybean (Glycine max [L.] Merr). Ind. Crops Prod., 50: 743-749.
35.    Stevenson, D. G., Eller, F. J., Wang, L. P., Jane, J. L., Wang, T. and Inglett, G. E. 2007. Oil and Tocopherol Content and Composition of Pumpkin Seed Oil in 12 Cultivars. J. Agric. Food Chem., 55: 4005-4013.
36.    Surekha, M. and Reddy, S. M. 2000. Preservatives. Classification and Properties. In: “Encyclopedia of Food Microbiology”, (Eds.): Robinson, R. K. and Batt Patel, C. A. Academic Press, New York, PP. 1710-1717.
37.    Tinoco, L.P., Do, N., Porte, A., Porte, L. H. M., Godoy, R. L. O. and Pacheco, S. 2012. Amino Acid Profile of Pumpkin Seed Flour. Unopar Cient. Cienc. Biol. Saude., 14: 149-153.
38.    Younis, M. H., Ghirmay, S. and Al-Shihry, S. S. 2000. African Cucurbita pepo L.: Properties of Seed and Variability in Fatty Acid Composition of Seed Oil. Phytochem., 54: 71–75.
39.    Zhang, K., Wang, M. And Gao, C. 2011. Tartaric Acid Production by Ion Exchange Resin-Filling Electrometathesis and Its Process Economics. J. Membr. Sci., 366: 266–271.
40.    Zuhair, H. A., Abd El-Fattah, A. A. and El-Sayed, M. I. 2000. Pumpkin Seed Oil Modulates the Effect of Feloipine and Captopril in Spontaneously Hypersensitive Rats. Pharmacol. Res., 41: 555-563.