Relations between Some Phytochemical Properties and Fatty Acid Content of Pumpkin (Cucurbita pepo L.) Seeds

Document Type : Original Research

Authors
1 Department of Horticulture Faculty of Agriculture, Atatürk University, Erzurum, Türkiye .
2 Department of Horticulture Faculty of Agriculture, Ankara University, Ankara, Türkiye .
3 Department of Horticulture Faculty of Agriculture, Kilis 7 Aralik University, Kilis, Türkiye .
Abstract
Pumpkin (Cucurbita pepo L.) seeds are popular for their dietary and health benefits. However, there are limited data on the pathway between phytochemical and nutritional values of pumpkin seeds. For this purpose, the seeds of some Turkish pumpkin genotypes (NVS-1, NVS-2, KNY, KYS-1, KYS-2, BRS, EDR, and KRK) were analyzed for their amino acids, organic acids, fatty acids, and mineral content. The wide variation between seeds in organic acids (KYS-2, 8.105 ng µL-1; KRK, 1.939 ng µL-1) and amino acids (KYS-2, 32.99 nmol µL-1; KNY, 15.65 nmol µL-1) content was observed. C18:2n6 and C18:1n9 were the most predominant fatty acids in the seeds, whereas C16:1n7 was the least abundant. Considering the mineral contents, seeds were relatively rich in potassium (2560.3-6697.5 mg kg-1), phosphorus (529.8-1120.9 mg kg-1), and magnesium (426- 1124.5 mg kg-1). Moreover, the path diagram of phytochemical properties, nutritional value, and fatty acids of pumpkin seeds was determined. Consequently, the seeds of pumpkin cultivars were examined to find the best potential for a high nutritional value and contribution to the food industry.

Keywords

Subjects


1. Al-Bataina, B.A., Maslat, A.O., Al-Kofahi, M. M. 2003. Element analysis and biological studies on ten oriental spices using XRF and Ames test. J Trace Elem Med Biol., 17: 85-90.
2. Al-Khalifa, A.S. 1996. Physicochemical characteristics, fatty acid composition, and lipoxygenase activity of crude pumpkin and melon seed oils. J. Agric. Food Chem., 44: 964–966.
3. Antoine, F.R., Wei, C.I., Littell, R.C., Marshall, M.R. 1999. HPLC method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization J. Agric. Food Chem., 47: 5100-5107.
4. AOAC. 1995. Official methods of analysis, (15th ed.). Washington DC: Association of Official Analytical Chemists
5. Applequist, W.L., Avula, B., Schaneberg, B.T., Wang, Y.H., Khan, I.A., 2006. Comparative fatty acid content of seeds of four Cucurbita species grown in a common (shared) garden. J. Food Compos. Anal., 19: 606–611.
6. Aristoy, M.C., Toldra, F. 1991. Deproteinization techniques for HPLC amino acid analysis in fresh pork muscle and dry-cured ham. J. Agric. Food Chem., 39: 1792-1795.
7. Bangash, J.A., Arif, M., Khan, F., Khan, F., Amin-Ur-Rahman, Hussain. I. 2011. Proximate composition, minerals and vitamins content of selected vegetables grown in Peshawar. J. Chem. Soc. Pak., 33: 118-122.
8. Bellion, M., Courbot, M., Jacob, C., Blaudez, D., Chalot, M. 2006. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol. Lett, 254: 173-181.
9. Bhardwaj, H.L., Hamama, A.A. 2009. Cultivar and growing location effects on oil content and fatty acids in canola sprouts. HortSci, 44: 1628-1631.
10. Bremner, J.M. 1996. Nitrogen total. Sparks D. L. (Ed.), Methods of Soil Analysis. Part III. Chemical Methods 2nd ed (pp. 1085–1122). Madison, WI, USA
11. Charaya, A., Chawla, N., Dhatt, A. S., Sharma, M., Sharma, S., & Kaur, I. 2023. Evaluation of biochemical composition of hulled and hull-less genotypes of pumpkin seeds grown in subtropical India. Heliyon, e12995.
12. David, F., Sandra, P., Wylie, P.L. 2003. Improving the analysis of fatty acid methyl esters using retention time locked methods and retention time databases. URL http://www.chem.agilent.com/Library/applications/5988-5871EN.pdf. Accessed 11.03.14.
13. De Mello, M.L.S., Narain, N., Bora, P.S. 2000. Characterisation of some nutritional constituents of melon (Cucumis melo hybrid AF-522) seeds. Food Chem, 68: 411–414.
14. Folch, J., Less, M., Stanley, G.H.S. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem, 226: 497–509.
15. Fu, C., Shi, H., Li, Q. 2006. A review on pharmacological activities and utilization technologies of pumpkin. Plant Foods Hum. Nutr, 61: 73-80.
16. Glew, R.H., Glew, R.S., Chuang, L.T., Huang, Y.S., Millson, M., Constans, D., Vanderjagt, D.J. 2006. Amino acid, mineral and fatty acid content of pumpkin seeds (Cucurbita spp) and Cyperus esculentus nuts in the Republic of Niger. Plant Foods Hum. Nutr,61: 51-56.
17. Gunes, A., Turan, M., Gulluce, M., Sahin, F. 2014. Nutritional content analysis of plant growth-promoting rhizobacteria species. Eur. J. Soil Biol, 60: 88-97.
18. Gossell-Williams, M., Davis, A., O’Connor, N. 2006. Inhibition of testosterone-induced hyperplasia of the prostate of Sprague-Dawley rats by pumpkin seed oil. J Med Food, 9: 284-286.
19. Huang, X.E., Hirose, K., Wakai, K., Matsuo, K., Ito, H., Xiang, J., Takezaki, T., Tajima, K. 2004. Comparison of lifestyle risk factors by family history for gastric, breast, lung and colorectal cancer. Asian Pac. J. Cancer Prev, 5: 419-427.
20. Idouraine, A., Kohlhepp, E.A., Weber, C.W. 1996. Nutrient constituents from eight lines of naked seed squash (Cucurbita pepo L.). J. Agric. Food Chem., 44: 721–724.
21. Juranovic, I., Breinhoelder, P., Steffan, I. 2003. Determination of trace elements in pumpkin seed oils and pumpkin seeds by ICP-AES. J Anal At Spectrom, 18: 54–58.
22. Kaymak, H.C. 2012. The relationships between seed fatty acids profile and seed germination in cucurbit species. Žemdirbystė-Agriculture, 99: 299-304.
23. Kaymak, H.C. 2015. Profile of (n-9) and (n-7) Isomers of monounsaturated fatty acids of radish (Raphanus sativus L.) seeds. J Am Oil Chem Soc, 92: 345-351.
24. Kim, M. 2006. Determining citrate in fruit juices using a biosensor with citrate lyase and oxaloacetate decarboxylase in a flow injection analysis system. Food Chem, 99: 851-857.
25. Mansour, E.H., Dworscha´k. E., Lugasi. A., Barna. E.Ä., Gergely, A. 1993. Nutritive value of pumpkin (Cucurbita pepo Kakai 35) seed products. J. Sci. Food Agric, 61: 73-78.
26. McCluskey, J., Herdman, L., Skene, K.R. 2004. Iron deficiency induces changes in metabolism of citrate in lateral roots and cluster roots of Lupinus albus. Physiologia Plantarum 121: 586-594.
27. Metcalfe, L.D., Schmitz, A.A. 1961. The rapid preparation of fatty acid esters for gas chromatographic analysis. Anal Chem, 33: 363–364.
28. Murkovic, M., Piironen, V., Lampi, A.M., Kraushofer, T., Sontag, G. 2004. Changes in chemical composition of pumpkin seeds during the roasting process for production of pumpkin seed oil (Part 1: Nonvolatile compounds). Food Chem 84: 359-365.
29. Nawirska-Olszanska, A., Biesiada, A., Sokol-Letowska, A., Kucharska, A.Z. 2014. Characteristics of organic acids in the fruit of different pumpkin species. Food Chem, 148: 415-419.
30. Procida, G., Stancher, B., Cateni, F., Zacchigna, M. 2013. Chemical composition and functional characterisation of commercial pumpkin seed oil. J. Sci. Food Agric, 93: 1035-1041.
31. Rezig, L., Chouaibi, M., Msaada, K., Hamdi, S. 2012. Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Ind Crops Prod, 37: 82-87.
32. Saavedra, L., Barbas, C. 2003. Validated capillary electrophoresis method for small-anions measurement in wines. Electrophoresis 24: 2235-2243.
33. Silva, B.M., Andrade, P.B., Goncalves, A.C., Seabra, R.M., Oliveira, M.B., Ferreira, M.A. 2004. Influence of jam processing upon the contents of phenolics, organic acids and free amino acids in quince fruit (Cydonia oblonga Miller). Eur. Food Res. Technol, 218: 385–389.
34. Song, J.F., Liu, C.Q., Li, D.J., Gu, Z.X. 2013. Evaluation of sugar, free amino acid, and organic acid compositions of different varieties ofvegetable soybean (Glycine max [L.] Merr). Ind Crops Prod, 50: 743-749.
35. Stevenson, D.G., Eller, F.J., Wang, L.P., Jane, J.L., Wang, T., Inglett, G.E. 2007. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J. Agric. Food Chem. 55: 4005-4013.
36. Surekha, M., Reddy, S.M. 2000. Preservatives. Classsification and properties. In R. K. Robinson CA, Batt Patel (Eds.), Encyclopedia of food microbiology (pp. 1710-1717). New York: Academic Press.
37. Tinoco, L.P., Do, N., Porte, A., Porte, L.H.M., Godoy, R.L.O., Pacheco, S. 2012. Amino acid profile of pumpkin seed flour. UNOPAR Científica Ciências Biológicas e da Saúde Journal 14: 149-153.
38. Uzun, A., Gucer, S., Acikgoz, E. 2011. Common vetch (Vicia sativa L.) germplasm: Correlations of crude protein and mineral content to seed traits. Plant Foods Hum. Nutr. 66: 254–260.
39. Valentao, P., Andrade, P.B., Rangel, J., Ribeiro, B., Silva, B.M., Baptista, P. 2005. Effect of the conservation procedure on the contents of phenolic compounds and organic acids in chanterelle (Cantharellus cibarius) mushroom. J. Agric. Food Chem. 53: 4925–4931.
40. Wang, Z.Q., Senga, E.F.B., Wang, D.Y. 2005. Vegetable soy bean (Glycine max (L.) Merrill) from production to processing. Outlook on Agriculture 34: 167-172.
41. Younis, M.H., Ghirmay, S., Al-Shihry, S.S. 2000. African Cucurbita pepo L.: properties of seed and variability in fatty acid composition of seed oil. Phytochem, 54: 71–75.
42. Zhang, K., Wang, M., Gao, C. 2011. Tartaric acid production by ion exchange resin-filling electrometathesis and its process economics. J. Membr. Sci. 366: 266–271.
43. Zheng, Y.Q., Yang, C.Z., Pu, W.H., Zhang, J.D. 2009. Determination of oxalic acid in spinach with carbon nanotubes-modified electrode. Food Chem, 114: 1523-1528.
44. Zuhair, H.A., Abd El-Fattah, A.A., Abd El-Latif, H.A. 1997. Efficacy of simvastatin and pumpkin-seed oil in the management of dietary-induced hypercholesterolemia. Pharmacol. Res, 35: 403-408.
45. Zuhair, H.A., Abd El-Fattah, A.A., El-Sayed, M.I. 2000. Pumpkinseed oil modulates the effect of felodipine and captopril in spontaneously hypersensitive rats. Pharmacol. Res, 41: 555-563.