In Vitro and in Vivo Potential of Plant Growth-Promoting Rhizobacteria as Biological Control Agents against Alternaria terricola

Document Type : Original Research

Authors
1 Laboratory of Biotechnology and Bio-Geo Resources Valorization BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, ISBST, Ariana 2020, Tunisia.
2 Department of Engineering, German University of Technology in Oman, P.O. Box 1816, PC 130, Muscat, Sultanate of Oman.
Abstract
In this study, the antagonistic effects of 14 Plant Growth-Promoting Rhizobacteria strains (PGPRs) against the phyto-pathogenic species Alternaria terricola Woudenb. & Crous were investigated, both in vitro and in vivo. The obtained results revealed significant inhibition effects of the 14 PGPR strains against A. terricola in both direct contact and indirect bioassays with significant variation. The dual in vitro culture tests revealed substantial inhibition rates in the growth of A. terricola strain, ranging from 25±5.41% (Pseudomonas koreensis O3RR25) to 71.87±3.12% (Bacillus megaterium FR1.11). Moreover, the indirect antagonism test showed that the volatile organic compounds produced by the 14 tested PGPR strains significantly inhibited the growth of A. terricola mycelium, with variations ranging from 36.61±0.94% (P. brassicacearum O3RR24) to 67.75±0.94% (B. megaterium FR1.11). Microscopic examination of A. terricola following exposure to the volatile compounds revealed significant structural damage, including inhibition of conidial germination, deformations, thin or fissured structures, irregular lengths, and the formation of empty segments. The in vivo application of B. megaterium FR1.11 resulted in the reduction of fungal development on detached leaves and tomato seedlings. This treatment engendered a significant increase in the levels of chlorophyll a, b and total, carotenoids, polyphenols, and proline in infected tomato seedlings compared to the control. Applying this PGPR strain to infected tomato plants allowed maintaining comparable level of malondialdehyde as the control. B. megaterium FR1.11 showed considerable in vitro and in vivo antifungal activity and could serve as a promising candidate for biological control strategies targeting phytopathogenic species of the genus Alternaria.

Keywords


1. Ali, S., Hameed, S., Shahid, M., Iqbal, M., Lazarovits, G., and Imran, A. 2020. Functional Characterization of Potential PGPR Exhibiting Broad-Spectrum Antifungal Activity. Microbiol. Res., 232: 126389.
2. Attia, M. S., El-Sayyad, G. S., Abd Elkodous, M., and El-Batal, A. I. 2020. The Effective Antagonistic Potential of Plant Growth-Promoting Rhizobacteria Against Alternaria solani-causing Early Blight Disease in Tomato Plant. Sci. Hortic., 266: 109289.
3. Bahramisharif, A., and Rose, L. E. 2019. Efficacy of Biological Agents and Compost on Growth and Resistance of Tomatoes to Late Blight. Planta, 249: 799-813.
4. Bates, L. S., Waldren, R. P., and Teare, I. D. 1973. Rapid Determination of Free Proline for Water Stress Studies. Plant Soil, 39: 205-207.
5. Cherif, H., Sghaier, I., Hassen, W., Amara, C., Masmoudi, A. S., Cherif, A., and Neifar, M. 2022. Halomonas desertis G11, Pseudomonas rhizophila S211 and Oceanobacillus iheyensis E9 as Biological Control Agents Against Wheat Fungal Pathogens: PGPB Consorcia Optimization Through Mixture Design and Response Surface Analysis. Int. Clin. Pathol. J., 9: 20-28.
6. Cherif, A., Brusetti, L., Borin, S., Rizzi, A., Boudabous, A., Khyami-Horani, H., and Daffonchio, D. 2003. Genetic Relationship in the ‘Bacillus cereus group’ by rep-PCR Fingerprinting and Sequencing of a Bacillus anthracis-specific rep-PCR Fragment. J. Appl. Microbiol., 94: 1108-1119.
7. Chiappero, J., Cappellari, L. D. R., Alderete, L. G. S., Palermo, T. B., and Banchio, E. 2019. Plant Growth Promoting Rhizobacteria Improve the Antioxidant Status in Mentha piperita Grown Under Drought Stress Leading to an Enhancement of Plant Growth and Total Phenolic Content. Ind. Crops Prod., 139: 111553.
8. Daigham, G. E., Mahfouz, A. Y., Abdelaziz, A. M, Nofel M. M., and Attia M. S. 2023. Protective Role of Plant Growth-Promoting Fungi Aspergillus chevalieri OP593083 and Aspergillus egyptiacus OP593080 as Biocontrol Approach Against Alternaria Leaf Spot Disease of Vicia faba Plant. Biomass Conv. Bioref., https://doi.org/10.1007/s13399-023-04510-4.
9. Doblinski, P. M. F., Ferrarese, M. L. L., Huber, D. A., Scapim, C. A., Braccini, A. L., and Ferrarese-Filho, O. 2003. Peroxidase and Lipid Peroxidation of Soybean Roots in Response to p-coumaric and p-hydroxybenzoic Acids. Braz. Arch. Biol. Technol., 46: 193-198.
10. Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K., and Vishwakarma, R. K. 2019. Exploitation of Microbial Antagonists for the Control of Postharvest Diseases of Fruits: A Review. Crit. Rev. Food. Sci. Nutr., 59: 1498-1513.
11. Elnahal, A. S. M., El Saadony, M. T., Saad, A. M., Desoky, E. S. M., El-Tahan, A. M., Rady, M. M., AbuQamar, S. F., and El-Tarabily, K. A. 2022. The Use of Microbial Inoculants for Biological Control, Plant Growth Promotion, and Sustainable Agriculture: A Review. Eur. J. Plant Pathol., 162: 759-792.
12. Fernandez-San Millan, A., Larraya, L., Farran, I., Ancin, M., and Veramendi, J. 2021. Successful Biocontrol of Major Postharvest and Soil-Borne Plant Pathogenic Fungi by Antagonistic Yeasts. Biol. Control., 160: 104683.
13. Ferraz, P., Cássio, F., and Lucas, C. 2019. Potential of Yeasts as Biocontrol Agents of the Phytopathogen Causing Cacao Witches’ Broom Disease: Is Microbial Warfare a Solution? Front. Microbiol., 10: 1766.
14. Fisher, M. C., Hawkins, N. J., Sanglard, D., and Gurr, S. J. 2018. Worldwide Emergence of Resistance to Antifungal Drugs Challenges Human Health and Food Security. Science, 360: 739-742.
15. Florea, A., and Puia, C. 2020. Alternaria Genus and the Diseases Caused to Agricultural and Horticultural Plants. Bull. UASVM. Agric., 77: 53-63.
16. Gong, Y., Chen, L. J., Pan, S. Y., Li, X. W., Xu, M. J., Zhang, C. M., Xing, K., and Qin, S. 2020. Antifungal Potential Evaluation and Alleviation of Salt Stress in Tomato Seedlings by a Halotolerant Plant Growth-Promoting Actinomycete Streptomyces sp. KLBMP5084. Rhizosphere, 16: 100262.
17. Gupta, P. K. 2018. Chapter 45 - Toxicity of Fungicides, Editor(s): Ramesh C. Gupta, Veterinary Toxicology (Third Edition), Academic Press, Pages 569-580.
18. Haidar, R., Roudet, J., Bonnard, O., Dufour, M. C., Corio-Costet, M. F., Fert, M., Gautier, T., Deschamps, A., and Fermaud, M. 2016. Screening and Modes of Action of Antagonistic Bacteria to Control the Fungal Pathogen Phaeomoniella chlamydospora Involved in Grapevine Trunk Diseases. Microbiol. Res., 192: 172-184.
19. Hassen, W., Neifar, M., Cherif, H., Najjari, A., Chouchane, H., Driouich, R. C., Salah, A., Naili, F., Mosbah, A., Souissi, Y., Raddadi, N., Ouzari, H. I., Fava, F., and Cherif A. 2018. Pseudomonas rhizophila S211, a New Plant Growth-Promoting Rhizobacterium with Potential in Pesticide-Bioremediation. Front. Microbiol., 9: 34.
20. Imran, Z. K. 2011. Isolation and Identification Species of Ulocladium Preuss from Different Regions in Iraq. Basrah J. Agric. Sci., 24: 27-47.
21. Karthika, S., Varghese, S., and Jisha, M. S. 2020. Exploring the Efficacy of Antagonistic Rhizobacteria as Native Biocontrol Agents Against Tomato Plant Diseases. 3 Biotech., 10: 320.
22. Kazerooni, E. A., Maharachchikumbura, S. S. N., Al-Sadi, A. M., Kang, S. M., Yun, B. W., Lee, I. J. 2021. Biocontrol Potential of Bacillus amyloliquefaciens against Botrytis pelargonii and Alternaria alternata on Capsicum annuum. J. Fungi 7: 472.
23. Khanna, K., Kohli, S. K., Ohri, P., Bhardwaj, R., Al-Huqail, A. A., Siddiqui, M. H., Alosaimi, G. S., and Ahmad, P. 2019. Microbial Fortification Improved Photosynthetic Efficiency and Secondary Metabolism in Lycopersicon esculentum Plants Under Cd Stress. Biomolecules, 9: 581.
24. Kousar, B., Bano, A., and Khan, N. 2020. PGPR Modulation of Secondary Metabolites in Tomato Infested with Spodoptera litura. Agronomy, 10: 778.
25. Lichtenthaler, H. K., and Wellburn, A. R. 1983. Determination of Total Carotenoids and Chlorophyll a and b of Leaf Extract in Different Solvents. Biochem. Soc. Trans., 11: 591-592.
26. Nahar, S., Mushtaq, M., and Pathan, I. H. 2004. Seed-borne Mycoflora of Capsicum annuum Imported from India. Pak. J. Bot., 36: 191-197.
27. Parasuraman, P., Pattnaik, S. S., Busi, S., Marraiki, N., Elgorban, A. M., and Syed, A. 2022. Isolation and Characterization of Plant Growth Promoting Rhizobacteria and Their Biocontrol Efficacy Against Phytopathogens of Tomato (Solanum lycopersicum L.). Plant Biosyst., 156: 164-170.
28. Puvača, N., Bursić, V., Vuković, G., Budakov, D., Petrović, A., Merkuri, J., Avantaggiato, G., and Cara., M. 2020. Ascomycete Fungi (Alternaria spp.) Characterization as Major Feed Grains Pathogens. J. Agron. Technol. Eng. Manag., 3: 499-505.
29. Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S., Srivastav, A. L., and Kaushal, J. 2021. An Extensive Review on the Consequences of Chemical Pesticides on Human Health and Environment. J. Clean. Prod., 283: 124657.
30. Rasool, M., Akhter, A., Soja, G., and Haider, M. S. 2021. Role of Biochar, Compost and Plant Growth Promoting Rhizobacteria in the Management of Tomato Early Blight Disease. Sci. Rep., 11: 6092.
31. Riahi, L., Cherif, H., Miladi, S., Neifar, M., Bejaoui, B., Chouchane, H., Masmoudi, A. S., and Cherif, A. 2020. Use of Plant Growth Promoting Bacteria as an Efficient Biotechnological Tool to Enhance the Biomass and Secondary Metabolites Production of the Industrial Crop Pelargonium graveolens L'Hér. Under Semi-Controlled Conditions. Ind. Crops. Prod., 154: 112721.
32. Singh, A., Singh Gaurav, S., Shukla, G., Rani, P., Kumar, B., and Kumar, A. 2020. Evaluation of Mycogenic Silver and Zinc Oxide Nanoparticles as Potential Control Agent against Early Blight (Alternaria solani) of Potato (Solanum tuberosum L.). J. Adv. Sci. Res., 11: 164-172.
33. Singleton, V. L., and Rosi, J. A. 1965. Colorimetry of Total Phenolics with Phosphomolybdic–Phosphotungstic Acid Reagents. Am. J. Oenol. Vitic., 16: 144-158.
34. Soliman, S. A., Abdelhameed, R. E., and Metwally, R. A. 2023. In vivo and In vitro Evaluation of the Antifungal Activity of the PGPR Bacillus amyloliquefaciens RaSh1 (MZ945930) Against Alternaria alternate with Growth Promotion Influences on Capsicum annuum L. Plants. Microb. Cell Fact., 22: 70.
35. Syed Nabi, R. B., Shahzad, R., Tayade, R., Shahid, M., Hussain, A., Ali, M.W., and Yun, B.W. 2021. Evaluation Potential of PGPR to Protect Tomato Against Fusarium wilt and Promote Plant Growth. PeerJ., 9: e11194.
36. Wang, M., Xue, J., Ma, J., Feng, X., Ying, H., and Xu, H. 2020. Streptomyces lydicus M01 Regulates Soil Microbial Community and Alleviates Foliar Disease Caused by Alternaria alternate on Cucumbers. Front. Microbiol., 11: 942.
37. Wang, H., Liu, R., You, M. P., Barbetti, M. J., and Chen, Y. 2021. Pathogen Biocontrol Using Plant Growth-Promoting Bacteria (PGPR): Role of Bacterial Diversity. Microorganisms, 9: 1988.
38. Woudenberg, J. H., Groenewald, J. Z., Binder, M., and Crous, P. W. 2013. Alternaria Redefined. Stud. Mycol., 75: 171-212.