In vivo Performance of Cryotreated Pollen of Sweet Cherry (Prunus avium L.)

Document Type : Original Research

Authors
1 Department of Pomology and Fruit Breeding, Fruit Research Institute, Čačak, Kralja Petra I 9, 32000 Čačak Republic of Serbia.
2 Department of Fruit Physiology, Fruit Research Institute, Čačak, Kralja Petra I 9, 32000 Čačak, Republic of Serbia.
Abstract
The primary objective of this research was to reveal the effect of cryotreatment on pollen reproductive ability in vivo by monitoring pollen tube growth in sweet cherry (Prunus avium L.) pistils. The influence of cryotreatment was considered from the context of its interaction with pollinizer genotype, and the possibility for usage of in vivo parameters for assessment of pollen fertility. Pistils of sweet cherry cultivar ‘Regina’ were pollinated with both cryotreated and fresh pollen of ‘Kordia’ and ‘Summit’. Quantitative parameters of pollen tube growth in vivo (pollen tube number in certain pistil parts, pollen tube dynamics, and fertilization percentage) were determined using the fluorescence microscopy method, and the obtained data were analyzed together with those obtained for in vitro pollen performance and fruit set. The research indicated that: (i) Reproductive ability of cryotreated sweet cherry pollen can be estimated by analyzing parameters of its performance in vivo, which should be combined with in vitro test; (ii) Semi- or fully-compatible female recipients, whose sporophytes are supportive for male gametophytes should be used for the assessment; and (iii) The key parameters for in vivo testing are pollen tube number in the upper part of the style and in the ovary, as well as fertilization percentage, i.e. the percentage of pistils with penetration of the longest pollen tube in the nucellus of the ovary on the 10th day after pollination. Therefore, in vivo testing of the pollen reproductive ability after cryotreatment can give answers about pollen quality with valuable credibility, in a maximum of two weeks after thawing and rehydration.

Keywords

Subjects


1. Cerović, R. 1991. Cytogenetic Properties of Sour Cherry in Relation to Pollen. Genetika-Belgrade, 23: 247–258.
2. Connor, O. F. and Towill, L. E. 1993. Pollen-Handling Protocol and Hydration/Dehydration Characteristics of Pollen for Application to Long-term Storage. Euphytica, 68: 77–84.
3. Crowe, J. H., Crowe, L. M., Hoekstra, F. A. and Wistrom, C. A. 1989. Effects of Water on the Stability of Phospholipid Bilayers: The Problem of Imbibition Damage in Dry Organisms. In: „Seed Moisture”, Special Publication no 14., (Eds.): Stanwood, P. C. and McDonald, M. B., Crop Science Society of America Inc., USA, PP. 1–14.
4. Čalić, D., Milojević, J., Belić, M., Miletić, R. and Zdravković Korać, S. 2021. Impact of Storage Temperature on Pollen Viability and Germinability of Four Serbian Autochthon Apple Cultivars. Front. Plant Sci., 12: 709231.
5. Dinato, N. B., Imaculada Santos, I. R., Zanotto Vigna, B. B., De Paula, A. F. and Fávero, A. P. 2020. Pollen Cryopreservation for Plant Breeding and Genetic Resources Conservation. Cryo-Lett., 41: 15–127.
6. Dutta, S. K., Srivastav, M., Chaudhary, R., Lal, K., Patil, P., Singh, S. K. and Sing, A. K. 2013. Low Temperature Storage of Mango (Mangifera inidica L.) Pollen. Sci. Hortic., 161: 193–197.
7. Đorđević., M., Radičević, S., Cerović, R., Milošević, N. and Mitrović, M. 2012. Initial and Final Fruit Set in Plum Cultivar ‘Pozna Plava’ as Affected by Different Types of Pollination. Acta Hortic., 968: 121–124.
8. Đorđević, M., Vujović, T., Cerović, R., Glišić, I. S., Milošević, N., Marić, S., Radičević, S., Fotirić Akšić M. and Meland M. 2022. In vitro and in vivo Performance of Plum (Prunus domestica L.) Pollen from the Anthers Stored at Distinct Temperatures for Different Periods. Horticulturae, 8: 616.
9. Engelmann, F. 2004. Plant Cryopreservation: Progress and Prospects. In Vitro Cell. Dev. Biol. Plant, 40: 427–433.
10. Franchi, G. G., Piotto, B., Nepi, M., Baskin, C. C., Baskin, J. M. and Pacini, E. 2011. Pollen and Seed Desiccation Tolerance in Relation to Degree of Developmental Arrest, Dispersal and Survival. J. Exp. Bot., 62: 5267–5281.
11. Giovannini, A., Macovei, A., Caser, M., Mansuino, A., Ghione, G. G., Savona, M., Carbonera, D., Scariot, V. and Balestrazzi, A. 2017. Pollen Grain Preservation and Fertility in Valuable Commercial Rose Cultivars. Plants, 6: 17.
12. Hedhly, A., Hormaza J. I. and Herrero, M. 2005. Influence of Genotype-Temperature Interaction on Pollen Performance. J. Evol. Biol., 18: 1494–1502.
13. Hoekstra, F. A., Crowe, J. H. and Crowe, L. M. 1992. Germination And Ion Leakage are Linked with Phase Transitions of Membrane Lipids During Imbibition of Typha Latifolia L. Pollen. Physiol. Plantarum, 84: 29–34.
14. Hoekstra, F. A. and Van der Wal, E. G. 1988. Initial Moisture Content and Temperature of Imbibition Determine Extent of Imbibitional Injury in Pollen. J. Plant Physiol., 133: 257–262.
15. Hong, T. D., Ellis, R. H., Buitink, J., Walters, C., Hoekstra, F. A. and Crane, J. 1999. A Model of the Effect of Temperature and Moisture on Pollen Longevity in Air-dry Storage Environments. Ann. Bot.-London, 83: 167–173.
16. Kho, Y. O. and Baër, J. 1971. Fluorescence Microscopy in Botanical Research. Zeiss-Inf., 76: 54–57.
17. Martínez-Gómez, P., Gradziel, T. M., Ortega, E. and Dicenta, F. 2002. Low Temperature Storage of Almond Pollen. HortScience, 37: 691–692.
18. Meier, U. 2018. Growth stages of mono- and dicotyledonous plants: BBCH Monograph. Julius Kühn-Institut (JKI), Germany.
19. Orlova, S. Y., Pavlov, A. and Verzhuk, V. G. 2019. Viability of Pollen in Sweet Cherry (Cerasus avium) Varieties of Different Ecogeographic Origin in The Northwestern Region of Russia. Proceedings on Applied Botany, Genetics and Breeding, 180: 66–72. (in Russian).
20. Panella, L., Wheeler, L. and McClintock, M. E. 2009. Long-Term Survival of Cryopreserved Sugarbeet Pollen. J. Sugar Beet Res., 46: 1–9.
21. Preil, W. 1970. Observing of Pollen Tube in Pistil and Ovarian Tissue by Means of Fluorescence Microscopy. Zeiss-Inf., 75: 24–25.
22. Radičević, S., Cerović, R. and Đorđević, M. 2018. Ovule Senescence and Unusual Pollen Tube Growth in The Ovary of Sweet Cherry as Affected by Pistilar Genotype and Temperature. Span. J. Agric. Res., 16: e0704.
23. Radičević, S., Cerović, R., Nikolić, D. and Đorđević, M. 2016. The Effect of Genotype and Temperature on Pollen Tube Growth and Fertilization in Sweet Cherry (Prunus avium L.). Euphytica, 209: 121–136.
24. Radičević, S., Marić, S., Cerović, R. and Đorđević, M. 2013a. Assessment of Self-(In)Compatibility in Some Sweet Cherry (Prunus avium L.) Genotypes. Genetika-Belgrade, 45: 939–952.
25. Radičević, S., Nikolić, D., Cerović, R. and Đorđević, M. 2013b. In vitro Pollen Germination and Pollen Grain Morphology in some Sweet Cherry (Prunus avium L.) Cultivars. Rom. Biotech. Lett., 18: 8341–8349.
26. Radunic, M., Jazbec, A., Ercisli, S., Čmelik, Z. and Goreta Ban, S. 2017. Pollen-pistil Interaction Influence on the Fruit Set of Sweet Cherry. Hortic. Sci., 224: 358–366.
27. Rajasekharan, P. E., Ravish, B. S., Vasantha Kumar, T. and Ganeshan, S. 2013. Pollen Cryobanking for Tropical Plant Species. In: „Conservation of Tropical Plant Species”, (Eds.): Norma, M. N., Chin, H. F. and Reed, B. M. Springer-Verlag, New York, USA, PP. 1‒12.
28. Rajasekharan, P. E. and Rohini, M. R. 2023. Pollen Cryopreservation: Advances and Prospects. In: „Pollen Cryopreservation Protocols”, (Eds.): Rajasekharan, P. E. and Rohini, M. R. Springer Protocols Handbooks, Humana, New York, USA, PP. 1‒18.
29. Ružić, Dj., Vujović, T. and Cerović, R. 2014. Cryopreservation of Cherry Rootstock Gisela 5 Using Vitrification Procedure. Hort. Sci. (Prague), 41: 55–63.
30. Schuster, M. 2017. Self-Incompatibility (S) Genotypes of Cultivated Sweet Cherries – an Overview 2017. Quedlinburg 2017. OpenAgrar-Repositorium.
31. Sparks, D. and Yates, I. E. 2002. Pecan Pollen Stored Over a Decade Retains Viability. Hortic. Sci., 37: 176–177.
32. Vujović, T., Chatelet, P., Ružić, Đ. and Engelmann, F. 2015. Cryopreservation of Prunus spp. Using Aluminium Cryo-plates. Sci. Hortic-Amsterdam, 195: 173–182.
33. Winsor, J. A. and Stephenson, A. G. 1995. Demographics of Pollen Tube Growth in Cucurbita pepo. Can. J. Botany, 73: 583–589.
34. Xu, J., Li, B., Liu, Q., Shi, Y., Peng, J., Jia, M. and Liu Y. 2014. Wide-scale Pollen Banking of Ornamental Plants through Cryopreservation. CryoLetters, 35: 312–319.
35. Zhang, L., Ampatzidis, Y. and Whiting, M. D. 2012. Sweet Cherry Floral Organ Size Varies with Genotype and Temperature. Sci. Hortic-Amsterdam, 182: 156–164.