Abdollahi, H. 2003. Molecular biology of interaction between Erwinia amylovora and pear (Pyrus communis L.) genotypes with different susceptibility to fire blight. Ph.D. Thesis, Faculty of Agriculture, University of Florence, Italy.
Abdollahi. H., Ghahremani, Z. and Erfani Nia, K. 2015. Role of electron transport chain of chloroplasts in oxidative burst of interaction between Erwinia amylovora and host cells. Photosynth. Res., 124: 231-242.
Abdollahi, H. and Salehi, Z. 2017. Histology of Oxidative Stress and Generation of Reactive Oxygen Species Against Progress of Fire Blight Causal Agent in Pear Cultivars. Seed and Plant Production Journal 33 (2) 139-162.
Abdollahi, H., Rugini, E., Ruzzi, M. and Muleo, R. 2004. In vitro system for studying the interaction between Erwinia amylovora and genotypes of pear. Plant Cell, Tissue and Organ Culture 79:203–212.
Aznar, A., Patrit, O., Berger, A. and Dellagi, A. 2015. Alterations of iron distribution in Arabidopsis tissues infected by Dickeya dadantii, Mol. Plant Pathol. 16 521–528.
Aznar, A., Chen, N. W. G., Regault, M., Riache, N., Joseph, D., Desmaele, D., Mouille, G., Boutet, S., Soubigou- Taconnat, L., Renou, J-P., Thomine, S., Expert, D. and Dellagi, Alia. 2014. Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores1C W, Plant Physiol. 164(4): 2167–2183.
Azarabadi, S., Abdollahi, H., Torabi, M., Salehi, Z. and Nasiri, J. 2016. ROS generation, oxidative burst and dynamic expression profiles of ROS-scavenging enzymes of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in response to Erwinia amylovora in pear (Pyrus communis L). European Journal of Plant Pathology 147:279-294.
Balint-Kurti. P. 2019. The plant hypersensitive response: concepts, control and consequences. Molecular Plant Pathology 20:1163–1178.
Briat, J. F., Ravet, K., Arnaud, N., Duc, C., Boucherez, J., Touraine, B., Cellier, F. and Gaymard, F. 2010. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Annals of Botany 105:811-822.
Bogdanove, A. J., Kim, J. F., Wei, Z., Kolchinsky, P., Charkowski, A. O., Conlin, A. K., Collmer, A. and Beer, S. V. 1998. Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato. National Academy of Sciences 95:1325–1330.
Brisset, M. N. and Paulin, J. P. 1991. Relationships between electrolyte leakage from Pyrus communis and virulence of Erwinia amylovora. Physiological and Molecular Plant Pathology 39:443-453.
Dat, J., Vandenabeele, S., Vranova, E., Van Montagu, M., Inze, D. and Van Breusegem, F. 2000. Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795.
DebRoy, S., Thilmony, R., Kwack, Y. B., Nomura, K. and He, S. Y. 2004. A family of conserved bacterial effectors inhibits salicylic acid–mediated basal immunity and promotes disease necrosis in plants. PNAS USA 101:9927–9932.
Deak. M., Horvath, G. V., Davletova, S., Torok, K., Sass, L., Vass, I., Barna, B., Kiraly, Z. and Dudits, D. 1999. Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat Biotechnol 17:192–196.
Dellagi, A., Segond, D., Rigault, M., Fagard, M., Simon, C., Saindrenan, P. and Expert, D. 2009. Microbial siderophores exert a subtle role in Arabidopsis during infection by manipulating the immune response and the iron status. Plant Physiol. 150:1687-1696.
Dong, H., Delaney, T.P., Bauer, D. W. and Beer, S. V. 1999. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant Journal 2: 207–215.
Filek, M., Walas, S., Mrowiec, H., Rudolphy-Skorska, E., Sieprawska, A. and Biesaga-Koscielniak, J. 2012. Membrane permeability and micro and macro element accumulation in spring wheat cultivars during the short-term effect of salinity- and PEG-induced water stress. Acta Physiol Plant 34:985-995.
Foyer, C. H., Leadis, M. and Kunert, K. J. 1994. Photo oxidative stress in plants. Plant Physiology. 92:696-717.
Franza, T. and Expert, D. 2013. Role of iron homeostasis in the virulence of phytopathogenic bacteria: an ‘à la carte’ menu. MOLECULAR PLANT PATHOLOGY 14(4), 429–438.
Fuentes, G., Talavera., C., Oropeza, C., Desjardins, Y. and Santamaria, J. M. 2005. Exogenous sucrose can decrease in vitro photosynthesis but improve field survival and growth of coconut (Cocos nucifera L.) in vitro plantlets. In Vitro Cell Dev Biol Plant 41:69–76.
Gaudriault, S., Malandrin, L., Paulin, J. P. and Barny, M. A. 1997. DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB dependent way. Molecular Microbiology 26:1057–1069.
Gusberti, M., Klemm, U., Meier, M. S., Maurhofer, M. and Hunger Glaser, I. 2015. Fire Blight Control: The Struggle Goes On. A Comparison of Different Fire Blight Control Methods in Switzerland with Respect to Biosafety, Efficacy and Durability. Int J Environ Res Public Health 12(9): 11422–11447.
Halliwell, B. and Gutteridge, J. M. 2015. Free radicals in biology and medicine: Oxford University Press, USA.
Hassani, M., Salami, SA., Nasiri, J., Abdollahi, H. and Ghahremani, Z. 2015. Phylogenetic analysis of PR genes in some pome fruit species with the emphasis on transcriptional analysis and ROS response under Erwinia amylovora inoculation in apple. Genetica, 1–14.
Hegeduse, A., Erde, S., Janda, T., Szalai, J., Dubits, D. and Horrath, G. 2002. Effects of low temperature stress on ferritin or aldose reductase overexpressing transgenic tobacco plants. Biochimica et Biophysica Acta Szeged 46:97-98.
Holtappels, M., Noben, G. P., Van Dijck, P. and Valcke, R. 2018. Fire blight host-pathogen interaction: proteome profiles of Erwinia amylovora infecting apple rootstocks. Scientific Reports 8: 11689.
Katyal, J. C. and Sharma, B. D. 1980. A new technique of plant analysis to resolve iron chlorosis. Plant and Soil 55: 105–119.
Kim, J. F. and Beer, S. V. 1998. HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J Bacteriol 180: 5203-5210.
Krasuska, U. and Gniazdowska, A. 2012. Nitric oxide and hydrogen cyanide as regulating factors of enzymatic antioxidant system in germinating apple embryos. Acta Physiologiae Plantarum 34: 683–692.
Smirnoff, N. and Arnaud, D. 2018. Hydrogen peroxide metabolism and functionsin plants. New Phytologist 221:1197–1214
Lukac, R. J., Aluru, M. R. and Reddy, M. B. 2009. Quantification of ferritin from staple food crops. Journal of Agriculture and Food Chemistry 57:2155-2161.
Maleki, R., Abdollahi, H. and Piri, S. 2021. Variation of active iron and ferritin content in pear cultivars with different levels of pathogen resistance following inoculation with Erwinia amylovora. Journal of Plant Pathology. https://doi.org/10.1007/s42161-021-00998-9.
Malnoy, M., Venisse, J. S., Brisset, M. N. and Chevreau, E. 2003. Expression of bovine lactoferrin cDNA confers resistance to Erwinia amylovora in transgenic pear. Mol Breed 12:231–244.
Narayanasamy, P. 2008. Molecular Biology in Plant Pathogenesis and Disease Management: Disease Management. Springer.
Norliza, A. B., Mohd, Z. S., Nor, M. J., Rafidah, B. and Johari, S. 2018. Induction of Systemic Acquired Resistance in Papaya by Foliar Application of HrpN Recombinant Protein for Increased Resistance against Papaya Dieback Pathogen. Curr Inves Agri Curr Res 2(3)- CIACR. MS.ID.000136. DOI: 10.32474/CIACR.2018.02.000136.
Ong, S. T., Ho, J. Z. S., Ho, B. and Ding, J. L. 2006. Iron-withholding strategy in innate immunity. Immunobiology 211:295–314.
Oswald, O., Martin, T., Dominy, P. J. and Graham, I. A. 2001. Plastid redox state and sugars: interactive regulators of nuclear-encoded photosynthetic gene expression. Proc Natl Acad SciUSA 98:2047–2052.
Pandey, S. S. 2023. The Role of Iron in Phytopathogenic Microbe–Plant Interactions: Insights into Virulence and Host Immune Response. Plants 12, 3173.
Qiu, D., Wei, Z.-W., Bauer, D.W. and Beer, S.V. 1997. Treatment of tomato seed with harpin enhances germination and growth and induces resistance to Ralstonia solanacearum. Phytopathology 87, S80.
Quoirin, M., Lepoivre, P. 1977. Etude de milieux adaptes aux cultures in vitro de Prunus. Acta Horticulturae.
Sahin, M., Misirli, A., Gokkur, S., Aksoy, D. and Ozaktan, H. 2020. Application of ybridization Breeding Technique for Fire Blight Resistance on Cydonia Oblonga: A Base Study on Susceptibility, Heterosis, and Heterobeltiosis Parameters. Int. J. Fruit Sci., 20: 1458–S1469
Sairam, R. K. and Srivastava, G. C. 2001. Water stress tolerance of wheat Triticum aestivum L.: Variation in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotype. J. Agron. Crop Sci., 186: 63-70.
Shetty, N. P., Jorgensen, H. J. L., Jensen, J. D., Collinge, D. B. and Shetty, H. S. 2008. Roles of reactive oxygen species in interactions between plants and pathogens. Eur. J. Plant. Pathol., 121: 267–280.
Taheri Shahrestani, A., Abdollahi, H., Yakhchali, B., Mehrabi, R. and EiniGandomani, O. 2020. Determination of the role of HrpN effector protein, as a key factor in course of interaction between Erwinia amylovora with chloroplasts of pear (Pyrus communis L.). J. Plant. Pathol., 102: 1041–1050.
Taheri Shahrestani, A., Abdollahi, H., Yakhchali, B., Mehrabi, R. and EiniGandomani, O. 2017. Comparison of the effects of Erwinia amylovora effector proteins on pear cultivars in active and inactive chloroplastic electron transport chain conditions. New. Genetic., 3: 333-345.
Vanneste, J. L. (2000). Fire Blight: The Disease and its Causative Agent, Erwinia amylovora. CABI Publishing, Wallingford, UK.
Venisse, J. S., Barny, M. A., Paulin, J. P. and Brisset, M. N. 2003. Involvement of three pathogenicity factors of Erwinia amylovora in the oxidative stress associated with compatible interaction in pear. FEBS. Letters., 537: 198–202.
Venisse, J. S., Gullner, G. and Brisset, M. N. 2001. Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora. Plant. Physiology., 125: 2164–2172.
Wang, Y., Gi, D., Chen, T., Li, B., Zhang, Z., Qin, G. and Tian, S. 2019. Production, Signaling, and Scavenging Mechanisms of Reactive Oxygen Species in Fruit–Pathogen Interactions. Int. J. Mol. Sci., 20(12): 2994.
Wei, Z. M., Laby, R.J., Zumoff, C. H., Bauer, D. W., He, S. Y., Collmer, A. and Beer, SV. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science., 257: 85-88.
Xie, Z. and Chen, Z. 2000. Harpin-induced hypersensitive cell death is associated with altered mitochondrial functions in tobacco cells. Molecular. Plant-Microbe. Interactions., 13: 183–190.
Xi, L., Xu, K., Qiao, Y., Qu, S., Zhang, Z. and Dai, W. 2011. Differential expression of ferritin genes in response to abiotic stresses and hormones in pear (Pyrus pyrifolia). Mol. Biol. Rep., 38 (7): 4405-13.
Yabuta, Y., Mieda, T., Rapolu, M., Nakamura, A. and Motoki, T. 2007. Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J. Exp. Bot., 58: 2661–2671.
Yadav, K., Patel, P., Srivastava, A. K. and Ganapathi, TR. 2017. Overexpression of native ferritin gene MusaFer1 enhances iron content and oxidative stress tolerance in transgenic banana plants. PLoS. ONE., 12(11): e0188933.
Zang, X., Geng, X., Wang, F., Liu, Z., Zhang, L., Zhao, Y., Tian, X., Ni, Z., Yao, Y., Xin, M., Hu, Z., Sun, Q. and Peng, H. (2017). Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biol., 17: 1-13.
Zhao, Y., Blumer, S.E. and Sundin, G.W. 2005. Identification of Erwinia amylovora genes induced during infection of immature pear tissue. J. acteriol. 187: 8088– 8103.