Nutritional Value of Sesame Meal Treated by Gamma Ray and Microwave Irradiation

Document Type : Original Research

Authors
Department of Animal Science, Shahr-e Qods Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.
Abstract
The aim of this study was to evaluate the effect of Gamma Ray irradiation (GR) at doses of 20 and 40 kGy and Microwaving (MW) at 800W for 3 and 5 minutes on ruminal degradation kinetics and in vitro digestibility of Sesame Seal (SSM). Degradability parameters of irradiated samples were measured by nylon bag technique. The amount of histidine, threonine, valine, alanine, arginine, glutamine, glycine, and serine were lower, but the amount of methionine and phenylalanine were higher in GR and MW treated samples compared to untreated ones. Irradiation reduced the fiber content of SSM and altered its chemical composition compared to the untreated SSM. Ruminal degradability of DM (Dry Matter) and CP (Crude Protein) was diminished in the treated SSM. Effective Degradability (ED) of DM and CP was found to be lower in the GR irradiated SSM compared to the MW irradiated SSM and the control. After 16 hours of ruminal incubation of the treated SSM, the degradability of isoleucine, methionine, phenylalanine, and threonine were lower, but those of glycine and serine were higher. The in vitro Digestibility of DM (DMD) and Organic Matter (OMD), as well as the Organic Matter in the Dry matter (DOMD) were lower and higher in GR and MW irradiated SSM, respectively, compared to unirradiated SSM. It can be concluded that irradiation of sesame meal by gamma ray irradiation was effective in protecting crude protein and some amino acids, including methionine and phenylalanine, from ruminal degradation.

Keywords


1. Al-Kaiesy, M. T., Abdul-Kader, H. A., Mohammad, M. H. and Saeed, A. H. 2003. Effect of gamma irradiation on antinutritional factors in broad bean. Radiat. Phys. Chem., 67: 493-496.
2. Al-Masri, M. R. and Guenther, K. D. 1999. Changes in digestibility and cell-wall constituents of some agricultural by-products due to gamma irradiation and urea treatments. Radiat. Phys. Chem., 55: 323-329.
3. Al-Masri, M. R. and Zarkawi, M. 1994. Effects of gamma irradiation on cell wall constituents of some agricultural residues. Radiat. Phys. Chem., 44: 661 -663.
4. AOAC. 1995. Official methods of Analysis. 16th Edition, AOAC international, Arlington, VA, USA.
5. Bahraini, Z., Salari, S., Sari, M., Fayazi J. and Behgar M. 2017. Effect of radiation on chemical composition and protein quality of cottonseed meal. Anim Sci J., 88(9): 1425-1435.
6. Bamidele, O. P. and Akanbi, C. T. 2015. Effect of gamma irradiation on amino acids profile,
minerals and some vitamins content in pigeon pea (Cajanus Cajan) flour. Br. J. Appl. Sci. Technol., 5(1): 90-98.
7. Beheshti-Moghadam, M. H., Rezaei, M., Behgar, M. and Kermanshahi, H. 2019. Efects of gamma and electron radiation on chemical composition and some phytochemical properties of whole faxseed. J. Radioanal. Nucl., Chem., 321(3): 1019-1025.
8. Bhat, R., Sridhar, K. R. and Yokotani, K. T. 2007. Effect of ionizing radiation on antinutritional features of velvet seed bean (Mucuna pruriens). Food Chem., 103: 860-866.
9. Bhat, Z. F., Morton, J. D., Bekhit, A. E. A., Kumar, S. and Bhat, H. F. 2021. Thermal processing implications on the digestibility of meat, fish and seafood proteins. Compr. Rev. Food Sci. Food Saf., 1-38.
10. Borucki Castro, S. I., Phillip, L. E., Lapierre, H., Jardon, P. W. and Berthiaume, R. 2007. Ruminal degradability and intestinal digestibility of protein and amino acids in treated soybean meal products. J. Dairy Sci., 90(2): 810–822.
11. Caidan, R., Cairang, L., Liu, B. and Suo, Y. 2014. Amino acid, fatty acid, and mineral compositions of fruit, stem, leaf and root of Rubus amabilis from the Qinghai-Tibetan Plateau. J Food Compost Anal., 33(1): 26–31.
12. Chandrasekaran, S., Ramanathan, S. and Basak, T. 2012. Microwave material processing-A review. AIChE J. 2012, 58: 330–363.
13. Cheftel, J. C., Cug, J. L. and Lorient, D. 1985. Amino acids, peptides and proteins. (Ed.): Fennema, O. 2nd Edition. In: food Chemistry. Marcel Dekker., NY. pp. 245-370.
14. Cho, Y. and Song, K. B.N. 2000. Effect of gamma-irradiation on the molecular properties of bovine serum albumin and beta-lactoglobulin. J. Biochem. Mol. Biol., 33: 133-137.
15. Davies, K. J. A. and Delsignore, M. E. 1987. Protein damage and degradation by oxygen radicals III. Modification of secondary structure and tertiary structure. J. Biol. Chem., 262(20): 9908- 9913.
16. Ebrahimi-Mahmoudabad, S. R. and Taghinejad-Roudbaneh, M. 2011. Investigation of electron beam irradiation effects on anti-nutritional factors, chemical composition and digestion kinetics of whole cottonseed, soybean and canola seeds. Radiat. Phys. Chem., 80(12): 1441–1447.
17. Englard, S. and Seifter, S. 1990. Precipitation techniques. Meth. Enzymol., 182: 285–306.
18. Erkan, N. and ozden, o. 2007. The changes of fatty acid and amino acid compositions in sea bream (Sparus aurata) during irradiation process. Radiat. Phys. Chem., 76: 1636–1641.
19. Fathi‐ Nasri, M. H., France, J., Danesh Mesgaran, M. and Kebreab, E. 2008. Effect of heat processing on ruminal degradability and intestinal disappearance of nitrogen and amino acids in Iranian whole soybean. Livest. Sci., 113: 43-51.
20. Gaber, M. 2005. Effect of γ-irradiation on the molecular properties of bovine serum albumin. J. Biosci. Bioeng., 100(2): 203-206.
21. Garrison, W. M. 1987. Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem. Rev., 87(2): 381–398.
22. Ghanbari, F., Ghoorchi, T., Shawrang, P., Mansouri, H. and Torbati‐ Nejad, N.M. 2012. Comparison of electron beam and gamma ray irradiations effects on ruminal crude protein and amino acid degradation kinetics, and in vitro digestibility of cottonseed meal. Radiat. Phys. Chem., 81(6): 672-678.
23. Ghanbari, F., Ghoorchi, T., Shawrang, P., Mansouri, H. and Torbati‐Nejad, N.M. 2015. Improving the nutritional value of sunflower meal by electron beam and gamma ray irradiations. Iran. J. Appl. Anim. Sci., 5(1): 21-28.
24. Golshan, S., Pirmohammadi, R. and Khalilvandi-Behroozyar, H. 2019. Microwave irradiation of whole soybeans in ruminant nutrition: Protein and carbohydrate metabolism in vitro and in situ. VRF., 10(4): 343-350.
25. Hahm, S., Son, H., Kim, W. and Son, Y. S. 2013. Effects of gamma irradiation on nutrient composition, anti-nutritional factors, in vitro digestibility and ruminal degradation of whole cotton seed. J. Anim. Sci. Technol., 55(2): 123–130.
26. Holm, N. W. and Berry, R. J. 1970. Manual on radiation dosimetry. New York: Dekker.
27. Kaneko, K., Yamasaki, K., Tagawa,Y., Tokunaga, M., Tobisa, M. and Furuse, M. 2002. Effects of dietary sesame meal on growth, meat ingredient and lipid accumulation in broilers. Jpn. Poult. Sci., 39: 56–62.
28. Lee, S. L., Lee, M. S. and Song, K. B. 2005. Effect of gamma– irradiation on the physicochemical properties of gluten films. Food Chem, 92: 621-625.
29. Lee, Y. and Song, K. B. 2002. Effect of gamma-irradiation on the molecular properties of myoglobin. J. Biochem. Mol. Biol., 35(6): 590–594.
30. Maity, J. P., Kar, S., Banerjee, S., Chakraborty, A. and Santra, S. C. 2009. Effects of gamma irradiation on long-storage seeds of oryza sativa (cv. 2233) and their surface infecting fungal diversity. Radiat. Phys. Chem., 78: 1006-1010.
31. Mamputu, M. and Buhr, R. J. 1995. Effect of substituting sesame meal for soybean meal on layer and broiler performance. Poult. Sci. J., 74(4): 672-684.
32. Maneemegalai, S. and Prasad, R. 2011. Evaluation of proximate composition and mineral content of commercially available groundnut and sesame meal. Agric. Sci. Digest., 31(2): 136-139.
33. Matloubi, H., Aflaki, F. and Hadjiezadegan, M. 2004. Effect of g-irradiation on amino acids content of baby food proteins. J. Food. Compost. Anal., 17: 133-139.
34. Onsaard, E., Pomsamud, P. and Audtum, P. 2010. Functional properties of sesame protein concentrates from sesame meal. As. J. Food Ag-Ind., 3(4): 419-430.
35. Passi, Z. O. S., Beski, S. S. M. and Kokten, S. S. M. 2019. Effect of graded levels of dietary rawsesame seeds on growth performance, serum biochemistry and nutrient digestibility of broiler chickens. Iraqi. J. Agric. Sci., 50(1): 369-381.
36. Peng, Q., Khan, N. A., Wang, Z. and Yu, P. 2014. Moist and dry heating-induced changes in protein molecular structure, protein subfractions, and nutrient profiles in camelina seeds. J. Dairy Sci., 97: 446–457.
37. Ørskov, E. R. and McDonaled, I. 1979. The estimation of protein degradability in rumen from incubation measurements weighted according to rate of passage. J. Agri. Sci., 92(2): 499–503.
38. Sadeghi, A. A., Nikkhah, A.and Shawrang, P. 2005. Effects of microwave irradiation on ruminal degradation and in vitro digestibility of soya-bean meal. Anim. Sci., 80(3): 369-375.
39. Sadeghi, A.A. and Shawrang, P. 2007. Effects of microwave irradiation on ruminal protein degradation and intestinal digestibility of cottonseed meal. Livest. Sci., 106: 176-181.
40. Sandev, S. and Karaivanov, I. 1977. The composition and digestibility of irradiation roughage: treatment with gamma radiation. Tierernaehr. Fuetter 10, 238.
41. Sant'Ana, A. D. S. 2017. Quantitative microbiology in food processing. Modeling the microbial ecology, in: Unluturk, S. (Eds.), impact of irradiation on the microbial ecology of foods. University of Campinas., Sao Paulo, Brazil, pp. 176-180.
42. Shawrang, P., Nikkhah, A., Zare-Shahneh, A., Sadeghi, A.A, Raisali, G. and Moradi-Shahrbabak, M. M. 2007. Effects of gamma irradiation on protein degradation of soybean meal in the rumen. Anim. Feed Sci. Technol., 134(1-2): 140-151.
43. Shawrang, P., Nikkhah, A., Zare-Shahneh, A., Sadeghi, A. A., Raisali, G. and Moradi-Shahrebabak, M. M. 2008. Effects of gamma irradiation on chemical composition and ruminal protein degradation of canola meal. Radiat. Phys. Chem., 77(7): 918-922.
44. Shishir, M. S. R., Brodie, G., Cullen, B., Kaur, R., Cho, E. and Cheng, L. 2020. Microwave heat treatment induced changes in forage hay digestibility and cell microstructure. Appl. Sci., 10: 1-11.
45. Steel, R. G. D., Torrie, J. H. 1980. Principles and Procedures of Statistics: A Biometrical Approach, 2nd Edition. McGraw-Hill, NY, USA.
46. Taghinejad-Roudbaneh, M., Kazemi-Bonchenari, M., Abdelfattah, Z. M., Salem, A. and Kholif, A. E. 2016. Influence of roasting, gamma ray irradiation and microwaving on ruminal dry matter and crude protein digestion of cottonseed. Ital. J. Anim Sci., 15(1): 144-150.
47. Taha, F. S. and Mohamed, S. S. 2004. Effect of different denaturating methods on lipid-protein complex formation. LWT-Food Sci Technol., 37: 99-104.
48. Tang, J., Fernandez Garcia, I., Vijayakumar, S., Martinez. H., Illa Bochaca, I., Nguyen, D., et al. 2012. Systems modelzring of stem/progenitor self-renewal romotion following ionizing radiation. The 58th Annual Meeting of the Radiation Research Society. San Juan, Puerto Rico, p. 18.
49. Tien, L. C., Letendre, M., Ispas-Szabo, P., Mateescu, M. A., Delmas-Patterson, G., Yu, H. L. and Lacroix, M. 2000. Development of biodegradable films from whey proteins by cross-linking and entrapment in cellulose. J. Agric. Food Chem., 48: 5566−5575.
50. Tilly, J. M. A.and Terry, R. A. 1963. A two stage technique for the in vitro digestion of forage crops. J. Br. Grassl. Soc., 18(2): 104-111.
51. Tuncer, S. D. and Sacakli, P. 2003. Rumen degradability characteristics of xylose treated canola and soybean meals. Anim. Feed. Sci. Technol., 107(1): 211-218.
52. Van Soest, P. J., Robertson, J. B.and Lewis, B. A 1991. Methods for dietary fiber, neutral detergent fiber and non starch polysaccharides in relation to animal nutrition. J. Dairy. Sci., 74(10): 3583–3597.
53. Waltz, D. M. and Stern, M. D. 1989. Evaluation of various methods for protecting soya-bean protein from degradation by rumen bacteria. Anim. Feed Sci. Technol., 25(1): 111-122.
54. Wang, Y., Jin, L., Wen, Q. N., Kopparapu, N. K., Liu, J., Liu, X. L.and Zhang, Y. G. 2016. Rumen degradability and small intestinal digestibility of the amino acids in four protein supplements. Asian-australas. J. Anim. Sci., 29(2): 241-249.
55. Xiang, S., Zou,H., Liu, Y.and Ruan, R. 2020. Effects of microwave heating on the protein structure, digestion properties and maillard products of gluten. J. Food Sci. Technol., 57(6): 2139-2149.
56. Yalcin, H., Ozturk, I., Hayta, M., Sagdic, O.and Gumus, T. 2011. Effect of Gamma-Irradiation on some chemical characteristics and volatile content of linseed. J. Med. Food., 14(10): 1223–1228.
57. Yan, X., Khan, N. A., Zhang. F., Yang, L.and Yu, P. 2014. Microwave irradiation induced changes in protein molecular structures of barley grains: relationship with changes in protein chemical profile, protein sub fractions and digestion in dairy cows. J. Agric. Food Chem., 62(28): 6546-6555.
58. Zarei, M., Kafilzadeh, F.and Shawrang, P. 2015. In vitro Gas Production and dry matter digestibility of irradiated pomegranate (Punica granatum) seeds. Iran. J. Appl. Anim. Sci. 6(1): 25-34.