1. Afzal, I., Javed, T., Amirkhani, M. and Taylor, A.G. 2020. Modern Seed Technology Seed
Coating Delivery Systems for Enhancing Seed and Crop Performance. Agriculture, 10: 526–545.
2. Chauhan, S., Gulati, N. and Nagaich, U. 2018. Glycyrrhizic acid: extraction, screening and
evaluation of anti– in flammatory property. Ars Pharm., 59(2): 61–67.
3. Chistyachenko, Y.S., Meteleva, E.S., Pakharukova, M.Y., Katokhin, A.V., Khvostov, M.V.,
Varlamova, A.I., Glamazdin, I.I., Khalikov, S.S., Polyakov, N.E., Arkhipov, I.A., Khvostov, M.V., Tolstikova, T.G. 2015. Physico chemical and pharmacological study of the newly synthesized complex of albendazole and polysaccharide arabinogalactan from larch wood. Current Drug Deliv., 12: 477–490.
4. Cicek, S. and Nadaroglu, H. 2015. The use of nanotechnology in the agriculture. Advances in
Nano Research, 3: 207–223.
5. Khalikov, S.S., Teplyakova, O.I., Vlasenko, N.G., Khalikov, M.S., Evseenko, V.I. and
Dushkin, A.V. 2015. The use of arabinogalactan to improve the technological and biological properties of grain dressing agents. Chem for Sustainable Development, 23 (5): 591–599.
6. Khalikov, S.S., Teplyakova, O.I., Vlasenko, N.G., Selyutina, O.Yu. and Polyakov, N.E. 2023.
Ecologically friendly formulations based on tebuconazole for plant protection and their biological efficacy. J.Agr.Sci.Tech., 25(2): 403–414.
7. Matsuoka, K., Miyajima, R., Ishida, I., Karasawa, S. and Yoshimura, T. 2015. Aggregate
formation of glycyrrhizic acid. Colloids Surf. A, 500: 112–117.
8. Medvedeva, E.N., Babkin, V.A. and Ostroukhova, L.A. 2003. Larch arabinogalactan-properties
and prospects of use (Review). Chemistry of plant raw materials, 1: 17–27.
9. Meteleva, E.S., Evseenko, V.I., Teplyakova, O.I., Khalikov, S.S., Polyakov, N.E., Apanasenko,
E.I., Dushkin, A.V. and Vlasenko, N.G. 2018. Nanopesticides based on tebuconazole supramolecular complexes for the treatment of cereal seeds. Chem for Sustainable Development, 3: 279–294.
16. Mukhopadhyay, S.S. 2014. Nanotechnology in Agriculture: Prospects and Constraints.
Nanotechnology. Science and Applications, 7: 63–71.
17. Paranjape, K., Gowariker, V., Krishnamurthy, V.N. and Gowariker, S. 2014. Pesticide
Encyclopedia (CABI, New Dehli), pp. 372–375.
18. Pereira, A.E.S., Oliveira, H.C., Fraceto, L.F. and Santaella, C. 2021. Nanotechnology Potential in
Seed Priming for Sustainable Agriculture: Review. Nanomaterials, 11: 267 – 294.
19. Rai, M. and Ingle, A. 2012. Role of Nanotechnology in Agriculture with Special Reference to
Management of Insect Pests. Applied Microbiology & Biotechnology, 94: 287–293.
20. Sharma, K.K., Singh, U.S., Sharma, P., Kumar, A. and Sharma, L. 2015. Seed treatments for
sustainable agriculture: A Review. J. Appl.Nat. Sci., 7(1): 521–539.
21. Selyutina, O.Yu., Polyakov, N.E., Korneev, D.V. and Zaitsev, B.N. 2014. Influence of
glycyrrhizin on permeability and elasticity of cellmembrane: perspectives for drugs delivery. Drug Deliv., 23(3): 858–865.
22. Selyutina, O.Yu., Apanasenko, I.E., Shilov, A.G., Khalikov, S.S. and Polyakov, N.E. 2017-a.
Effect of natural polysaccharides and oligosaccharides on the cell membrane permeability. Rus Chem Bull., 1: 129–135.
23. Selyutina, O., Apanasenko, I., Khalikov, S. and Polyakov, N.E. 2017-b. Natural poly- and
oligosaccharides as novel delivery systems for plant protection compounds. J Agric Food Chem., 65 (31): 6582–6587
24. Selyutina, O.Yu., Khalikov, S.S. and Polyakov, N.E. 2020. Arabinogalactan and glycyrrhizin
based nanopesticides as novel delivery systems for plant protection. Envir. Sci. Poll. Res., 27: 5864–5872.
25. Vlasenko, N.G., Teplyakova, O.I. and Dushkin, A.V. 2019. Application of mechanocomplexes of
tebuсonazole with vegetable organic polysaccharides for protection of spring wheat from leaf diseases. Siberian Herald of Agricultural Science, 49 (6): 5–15.
26. Vlasenko, N.G., Khalikov, S.S. and Burlakova, S.V. 2020 .Flexibile Techhology of Protectants
for Grain Seeds. IOP Conf. Ser. Earth Environ. Sci., 548: 082003.