Alleviation of Drought Stress in German Chamomile (Matricaria chamomilla L.) in Response to Suppressive Oxidative Stress and Water Deficit-Induced Stomatal Closure by Exogenous Polyamines

Document Type : Original Research

Authors
1 Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Islamic Republic of Iran.
2 Plant Breeding Department, Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Islamic Republic of Iran.
Abstract
Polyamines (PAs) are signaling molecules that exhibit promising roles in improving stress tolerance in plants. Limited information is available concerning the effects of the exogenous PAs on medicinal plants including chamomile. This experiment was carried out to study the effects of foliar application of PAs [Putrescine (Put), Spermidine (Spd), and Spermine (Spm)] on physiological and biochemical processes to understand the possible mechanisms concerning the water deficit stress [soil Field Capacity (FC) as control, 80% of FC (FC80), and 60% of FC (FC60)] alleviation in German Chamomile. We found that PAs partially inhibited water deficit-induced stomatal closure and induced antioxidant enzymes to eliminate the increased H2O2. Spd increased stomatal conductance (gs) by 66, 65, and 35% at FC, FC80, and FC60, respectively, compared with the control. The increased gs enhanced leaf net photosynthesis (AN) by 52 and 86% at FC80 and FC60, respectively, compared with the control. The role of PAs in oxidative damage alleviation was approved by the negative correlation of leaf antioxidant activities and Malondialdehyde (MDA) and H2O2 content. According to the results, PAs function as stress-protecting compounds to instigate the antioxidative enzymes to scavenge stress-induced H2O2, improve membrane stability, and enhance water deficit tolerance. Generally, our results suggested that PAs could be potential growth regulators to alleviate mild to severe water deficit stress.

Keywords

Subjects


1. Alcázar, R., Bueno, M. and Tiburcio, A. F. 2020. Polyamines: Small amines with large effects on plant abiotic stress tolerance. Cell, 9(11): 2373.
2. Alcázar, R., Cuevas, J. C., Patron, M., Altabella, T. and Tiburcio, A. F. 2006. Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol. Plant., 128(3): 448-455.
3. Ali, R., Abbas, H. and Kamal, R. 2009. The effects of treatment with polyamines on dry matter and some metabolites in salinity–stressed chamomile and sweet majoram seedlings. Plant Soil Environ., 55(11): 477-483.
4. Apel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann. Rev. Plant. Biol., 55: 373-399.
5. Baghalian, K., Abdoshah, S., Khalighi-Sigaroodi, F. and Paknejad, F. 2011. Physiological and phytochemical response to drought stress of German chamomile (Matricaria recutita L.). Plant Physiol. Biochem., 49(2): 201-207.
6. Cakmak, I. and Horst, W. J. 1991. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant., 83(3): 463-468.
7. Cheng, L., Sun, R.-r., Wang, F.-y., Peng, Z., Kong, F.-l., Wu, J., Cao, J.-s. and Lu, G. 2012. Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit. J. Zhejiang Univ. Sci. B., 13(4): 283-297.
8. Darabi, F., Abbasi, N. and Zarea, M. J. 2020. Evaluation of the effect of putrescine and brassinosteroid on induction of drought tolerance and physiological changes in basil plant (Ocimum basilicum L.). Environ. Str. Crop Sci., 13(4): 1183-1202. doi:10.22077/escs.2020.2449.1644
9. Das, M., Mallavarapu, G. and Kumar, S. 1998. Chamomile (Chamomilla recutita): Economic botany, biology, chemistry, domestication and cultivation. J. Med. Arom. Plant. Sci., 20: 1074-1109.
10. Dhar, M. K., Mishra, S., Bhat, A., Chib, S. and Kaul, S. 2020. Plant carotenoid cleavage oxygenases: structure–function relationships and role in development and metabolism. Brief. Func. Gen., 19(1): 1-9.
11. Farooq, M., Wahid, A. and Lee, D.-J. 2009. Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol. Plant., 31(5): 937-945.
12. Fischer, R., Rees, D., Sayre, K., Lu, Z. M., Condon, A. and Saavedra, A. L. 1998. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci., 38(6): 1467-1475.
13. Flexas, J. and Medrano, H. 2002. Drought‐inhibition of photosynthesis in C3 plants: stomatal and non‐stomatal limitations revisited. Ann. Bot., 89(2): 183-189.
14. Genty, B., Briantais, J.-M. and Baker, N. R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophysic. Acta (BBA)-Gen. Sub., 990(1): 87-92.
15. Ghanati, F., Morita, A. and Yokota, H. 2002. Induction of suberin and increase of lignin content by excess boron in tobacco cells. Soil Sci. Plant Nut., 48(3): 357-364.
16. Giannopolitis, C. N. and Ries, S. K. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol., 59(2): 309-314.
17. Gong, L., Liu, X.-D., Zeng, Y.-Y., Tian, X.-Q., Li, Y.-L., Turner, N. C. and Fang, X.-W. 2021. Stomatal morphology and physiology explain varied sensitivity to abscisic acid across vascular plant lineages. Plant Physiol., 186(1): 782-797.
18. Groppa, M. and Benavides, M. 2008. Polyamines and abiotic stress: recent advances. Amino acid., 34(1): 35-45.
19. Hafezi Ghehestani, M. M., Azari, A., Rahimi, A., Maddah-Hosseini, S. and Ahmadi-Lahijani, M. J. 2021. Bacterial siderophore improves nutrient uptake, leaf physiochemical characteristics, and grain yield of cumin (Cuminum cyminum L.) ecotypes. J. Plant Nut.: 1-13.
20. Hamdani, S., Yaakoubi, H. and Carpentier, R. 2011. Polyamines interaction with thylakoid proteins during stress. J. Photochem. Photobiol. B: Biol., 104(1-2): 314-319.
21. Hasan, M. M., Alharbi, B. M., Alhaithloul, H. A. S., Abdulmajeed, A. M., Alghanem, S. M., Al-Mushhin, A. A., Jahan, M. S., Corpas, F. J., Fang, X.-W. and Soliman, M. H. 2021. Spermine-mediated tolerance to selenium toxicity in wheat (Triticum aestivum L.) depends on endogenous nitric oxide synthesis. Antioxidant., 10(11): 1835.
22. Hassan, F., Ali, E. and Alamer, K. 2018. Exogenous application of polyamines alleviates water stress-induced oxidative stress of Rosa damascena Miller var. trigintipetala Dieck. South Afr. J. Bot., 116: 96-102.
23. Jiang, M. and Zhang, J. 2001. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol., 42(11): 1265-1273.
24. Li, M., Wang, C., Shi, J., Zhang, Y., Liu, T. and Qi, H. 2021. Abscisic acid and putrescine synergistically regulate the cold tolerance of melon seedlings. Plant Physiol. Biochem., 166: 1054-1064.
25. Li, X., Gong, B. and Xu, K. 2014. Interaction of nitric oxide and polyamines involves antioxidants and physiological strategies against chilling-induced oxidative damage in Zingiber officinale Roscoe. Sci Hort, 170: 237-248.
26. Lichthentaler, H. K. and Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents: Portland Press Ltd.
27. Liu, X. D., Zeng, Y. Y., Zhang, X. Y., Tian, X. Q., Hasan, M. M., Yao, G. Q. and Fang, X. W. 2023. Polyamines inhibit abscisic acid‐induced stomatal closure by scavenging hydrogen peroxide. Physiol. Plant.: e13903.
28. Lutts, S., Benincasa, P., Wojtyla, L., Kubala, S., Pace, R., Lechowska, K., Quinet, M. and Garnczarska, M. 2016. Seed priming: new comprehensive approaches for an old empirical technique, PP.
29. Mapelli, S., Brambilla, I., Radyukina, N., Ivanov, Y. V., Kartashov, A., Reggiani, R. and Kuznetsov, V. V. 2008. Free and bound polyamines changes in different plants as a consequence of UV-B light irradiation. Gen. App. Plant Physiol., 34(1-2): 55-66.
30. Mohammadi-Cheraghabadi, M., Modarres-Sanavy, S. A. M., Sefidkon, F., Rashidi-Monfared, S. and Mokhtassi-Bidgoli, A. 2021. Improving water deficit tolerance of Salvia officinalis L. using putrescine. Sci. Rep., 11(1): 1-15.
31. Moradi Peynevandi, K., Razavi, S. M. and Zahri, S. 2018. The ameliorating effects of polyamine supplement on physiological and biochemical parameters of Stevia rebaudiana Bertoni under cold stress. Plant Prod. Sci., 21(2): 123-131.
32. Murchie, E. H. and Lawson, T. 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot., 64(13): 3983-3998.
33. Nahar, K., Hasanuzzaman, M., Alam, M. and Fujita, M. 2015. Exogenous spermidine alleviates low temperature injury in mung bean (Vigna radiata L.) seedlings by modulating ascorbate-glutathione and glyoxalase pathway. Int. J. Mol. Sci., 16(12): 30117-30132.
34. Nakano, Y. and Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22(5): 867-880.
35. Pál, M., Szalai, G. and Janda, T. 2015. Speculation: polyamines are important in abiotic stress signaling. Plant Sci., 237: 16-23.
36. Raziq, A., Din, A. M. U., Anwar, S., Wang, Y., Jahan, M. S., He, M., Ling, C. G., Sun, J., Shu, S. and Guo, S. 2022. Exogenous spermidine modulates polyamine metabolism and improves stress responsive mechanisms to protect tomato seedlings against salt stress. Plant Physiol. Biochem., 187: 1-10.
37. Réthoré, E., Jing, L., Ali, N., Yvin, J.-C., Pluchon, S. and Hosseini, S. A. 2021. K deprivation modulates the primary metabolites and increases putrescine concentration in Brassica napus. Front. Plant Sci., 12: 681895.
38. Saha, J., Brauer, E. K., Sengupta, A., Popescu, S. C., Gupta, K. and Gupta, B. 2015. Polyamines as redox homeostasis regulators during salt stress in plants. Front. Environ. Sci., 3: 21.
39. Sang, Q., Shu, S., Shan, X., Guo, S. and Sun, J. 2016. Effects of exogenous spermidine on antioxidant system of tomato seedlings exposed to high temperature stress. Russ J Plant Physiol, 63(5): 645-655.
40. Sang, T., Shan, X., Li, B., Shu, S., Sun, J. and Guo, S. 2016. Comparative proteomic analysis reveals the positive effect of exogenous spermidine on photosynthesis and salinity tolerance in cucumber seedlings. Plant cell rep, 35(8): 1769-1782.
41. Sen, G., Eryilmaz, I. E. and Ozakca, D. 2014. The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina. Phytochem, 98: 54-59.
42. Sergiev, I., Alexieva, V. and Karanov, E. 1997. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Compt Rend Acad Bulg Sci, 51(3): 121-124.
43. Shahba, Z., Baghizadeh, A. and Yosefi, M. 2010. The salicylic acid effect on the tomato (Lycopersicum esculentum Mill.) germination, growth and photosynthetic pigment under salinity stress (NaCl). J Str Physiol Biochem, 6(3).
44. Smart, R. E. and Bingham, G. E. 1974. Rapid estimates of relative water content. Plant Physiol., 53(2): 258-260.
45. Tezara, W., Marín, O., Rengifo, E., Martínez, D. and Herrera, A. 2005. Photosynthesis and photoinhibition in two xerophytic shrubs during drought. Photosynthetica, 43(1): 37-45.
46. Tezara, W., Mitchell, V., Driscoll, S. and Lawlor, D. 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nat., 401(6756): 914-917.
47. Topp, G. and Davis, J. 1985. Time-domain reflectometry (TDR) and its application to irrigation scheduling. In: "Adv. Irr.", (Ed.): Elsevier, PP. 107-127.
48. Van Kooten, O. and Snel, J. F. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res., 25(3): 147-150.
49. Wang, Z., Li, G., Sun, H., Ma, L., Guo, Y., Zhao, Z., Gao, H. and Mei, L. 2018. Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol. Open, 7(11).
50. Wu, J., Shu, S., Li, C., Sun, J. and Guo, S. 2018. Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots. Plant Physiol. Biochem., 128: 152-162.
51. Yamaguchi, K., Mori, H. and Nishimura, M. 1995. A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant and Cell Physiology, 36(6): 1157-1162.
52. Yin, Z. P., Li, S., Ren, J. and Song, X. S. 2014. Role of spermidine and spermine in alleviation of drought-induced oxidative stress and photosynthetic inhibition in Chinese dwarf cherry (Cerasus humilis) seedlings. Plant Growth Regul., 74: 209-218.
53. Zhu, M.-D., Zhang, M., Gao, D.-J., Zhou, K., Tang, S.-J., Zhou, B. and Lv, Y.-M. 2020. Rice OsHSFA3 gene improves drought tolerance by modulating polyamine biosynthesis depending on abscisic acid and ROS levels. Int. J. Molecul. Sci., 21(5): 1857.