Nuclear DNA Content, Ploidy Level, and Chromosome Number in Turkish Okra Landraces

Document Type : Original Research

Authors
1 Department of Agricultural Biotechnology, Faculty of Agriculture, Akdeniz University, Antalya Turkey.
2 Tekirdag Anatolian High School, Tekirdag, Turkey.
3 Department of Field Crops, Faculty of Agriculture, Tekirdag Namik Kemal University, Tekirdağ, Turkey.
Abstract
Molecular studies show that okra germplasm harbour narrow genetic diversity despite certain level of phenotypic variation in Turkey. However, there is a gap in the information on the cytogenetics of Turkish okra genotypes. Studies on the cytogenetics and ploidy level may provide further information on the genetic diversity of Turkish okra germplasm. This study, therefore, investigated nuclear DNA content, ploidy level and chromosome number of 26 okra landraces and 3 commercial cultivars (Akköy-41, Kabaklı-11 and Marmara-1). The 2C nuclear DNA content varied from 3.05 to 3.20 pg with mean 2C values ranging between 3.11 and 3.18. The variation in nuclear DNA content was, however, statistically insignificant. Okra had a high number of chromosomes with very small sizes. The chromosome number of the plants investigated in the study was determined to be 2n (10x)= 128±2. Based on these results, the genotypes investigated are, probably, allodehaploid with some extra chromosomes and B chromosomes. In conclusion, the Okra germplasm has a narrow base of genetic diversity in the germplasm pool, which may limit the success of future breeding programs. Suggestions are discussed to enhance genetic diversity in the germplasm for more effective breeding programs.

Keywords

Subjects


1. Anwar, F., Qadir, R., and Ahmad, N. 2020. Cold Pressed Okra (Abelmoschus esculentus) Seed Oil. In Cold pressed oils (pp. 309-314). Academic Press, p. 309-314.
2. Arumuganathan, K., and Earle, E. D. 1991. Nuclear DNA content of some important plant species. Plant mol. Biol. Rep., 9: 208-218.
3. Benchasri, S. 2012. Okra (Abelmoschus esculentus (L.) Moench) as a Valuable Vegetable of the World Ratar. Ratarstvo i povrtarstvo, 49: 105-112.
4. Bhatt, J.P., Patel, N.A., Acharya, R.R. and Kathiria, K.B. 2016. Heterosis For Yield and Its Related Traits In Okra (Abelmoschus esculentus L. Moench). Electronic J. of Plant Breeding, 7(1): 189-196. DOI: 10.5958/0975-928X.2016.00026.0.
5. Comertpay, G. 2019. Assessment of Nuclear DNA Contents Variation And Their Relationship With Flowering In Corn Genotypes. Tr. J. of Field Crops, 24: 39–45.
6. Dhankhar, S.K. 2016. Genetic Improvement of Okra Cultivars For Yellow Vein Mosaic Virus Disease Resistance Using A Wild Abelmoschus Species. Acta Hort., 1127, 71-74 DOI: 10.17660/ActaHortic.2016.1127.13.
7. Doležel, J. and Bartos, J. 2005. Plant DNA Flow Cytometry and Estimation of Nuclear Genome Size. An. of Botany, 95: 99–110.
8. Düzyaman, E. 2005. Phenotypic Diversity Within a Collection of Distinct Okra (Abelmoschus esculentus) Cultivars Derived from Turkish Land Races. Genetic Res. and Crop Evolution, 52: 1019-1030.
9. Düzyaman, E. 2009. Okra in Turkey Domestic Landraces. In: Okra Handbook Global Production, Processing, and Crop Improvement (Dhankhar B.S. and Singh R., eds.). HNB Publishing, New York, 475, 323-346.
10. FAO, 2024. FAOSTAT [online]. [Cited 05 February 2024]. https://www.fao.org/faostat/en/#data/QCL
11. Jenkins, G. and Hasterok, R. 2007. BAC Landing on Chromosomes of Brachypodium distachyon For Comparative Genome Alignment. Nature Protocols, 2(1): 88-98.
12. Kantar, F., Yemsen, S.N., Bulbul, C., Yilmaz, N, and Mutlu, N. 2021. Phenotypic and Ipbs-Retrotransposon Marker Diversity in Okra (Abelmoschus esculentus (L.) Moench) Germplasm. Biotec. Studies, 30: 7–15.
13. Kumar, A., Kumar, P. and Nadendla, R. 2013. A review on: Abelmoschus esculentus (Okra). Int. Res J Pharm. App Sci., 3(4):129-132.
14. Kumar, S., Dagnoko, S., Haougui, A., Ratnadass, A., Pasternak, D. 2010. Okra (Abelmoschus spp.) In West and Central Africa: Potential and Progress on its Improvement. Afr J Agric Res., 5(25): 3590-3598.
15. Koutsos, T.V., Koutsika-Sotiriou, M., Gouli-vavdinoudi, E. Tertivanidis, K. 2000. Study of The Genetic Relationship 0f Greek Okra Cultivars (Abelmoschus esculentus L.) by Using Agronomic Traits, Heterosis and Combining Ability. J. of Veg. Crop Prod., 6(1): 25–35. http://dx.doi.org/10.1300/J068v06n01.
16. Kumar, A., Kumar, P., and Nadendla, R. 2013. A Review on: Abelmoschus esculentus (Okra). Int. Res. J. of Pharm. and App. Sci., 3(4): 129-132.
17. Kyriakopoulou, O.G. Arens, P., Pelgrom, K.T.B., Bebeli, P. and Passam, H.C. 2014. Genetic and Morphological Diversity of Okra (Abelmoschus esculentus [L.] Moench.) Genotypes and their Possible Relationships, with Particular Reference to Greek Landraces. Scientia Hort., 171: 58–70. https://doi.org/10.1016/j.scienta.2014.03.029.
18. Nieuwenhuis, R., Hesselink, T., van den Broeck, H. C., Cordewener, J., Schijlen, E., Bakker, L., Trivino, S.D., Struss, D., de Hoop, S.J., de Jong, H. and Peters, S. A. 2023. Genome Architecture and Genetic Diversity of Allopolyploid Okra (Abelmoschus esculentus). The Plant J., 1-17. https://doi: 10.1111/tpj.16602
19. Onyeneke, R. U., Agyarko, F. F., Onyeneke, C. J., Osuji, E. E., Ibeneme, P. A., and Esfahani, I. J. 2023. How Does Climate Change Affect Tomato and Okra Production? Evidence from Nigeria. Plants, 12(19): 3477.
20. Örkçü, P. 2016. Morphological and Cytological Characterization of the Okra Genotypes Collected from Different Locations M.Sc. Thesis, Namık Kemal Üniversity, Institute of Natural and Applied Sciences, Tekirdağ, Turkey.
21. Salameh, N.M. 2014. Flow Cytometric Analysis of Nuclear DNA Between Okra Landraces (Abelmoschus esculentus L.). Am. J. of Agric. and Biol. Sci., 9 (2): 245-250.
22. Seth, T., Chattopadhyay, A., Chatterjee, S., Dutta, S., and Singh, B. 2016. Selecting Parental Lines Among Cultivated and Wild Species of Okra for Hybridization Aiming at YVMV Disease Resistance. J. of Agric. Sci. and Tech., 18(3): 751-762.
23. Singh, B., Karmakar, P., Singh, P., Maurya, B. K., Singh, H., Sagar, V., Mishra, G.P. and Sanwal, S. K. 2023. Okra: Breeding and Genomics. Veg. Sci., 50(2): 261-273. https://doi.org/10.61180/vegsci.2023.v50.i2.01
24. Stawski, D., Çalişkan, E., Yilmaz, N.D. Krucińska, I. 2021 Thermal Characteristics of Okra Bast and Corn Husk Fibers Extracted via Alkalization. J. of Nat. Fibers, 19(14): 9101-9110, DOI: 10.1080/15440478.2021.1982440
25. Steel, R.G.D. and Torrie, J.H. 1960. Principles and Procedures Of Statistics. McGraw-Hill, New York.
26. Yıldız, M., Koçak, M. and Baloch, F.S. 2015. Genetic Bottlenecks in Turkish Okra Germplasm and Utility of IPBS Retrotransposon Markers For Genetic Diversity Assessment. Gen. and Mol. Res., 14(3): 10588-10602. http://dx.doi.org/10.4238/2015.
27. Yıldız, M., Ekbiç, E., Düzyaman, E., Serçe, S., and Abak, K. 2016. Genetic and Phenotypic Variation of Turkish Okra (Abelmoschus esculentus L. Moench) Accessions and their Possible Relationship with American, Indian and African Germplasms. J. of Plant Biochem. and Biotech., 3: 234-244.
28. Yılmaz, N. 2021. Local Okra Collected from Turkey (Abelmoschus esculentus L.) Genotypes Morphological Examination and Characterization of Variation. M.Sc. Thesis. Akdeniz University, Institute of Natural and Applied Sciences, Antalya, Turkey.