Alkio, M., Diepenbrock, W., Grimm, E., 2002. Evidence for sectorial photoassimilate supply in the capitulum of sunflower (Helianthus annuus). New Phytol., 156(3): 445-456. https://doi.org/10.1046/j.1469-8137.2002.00524.x
Alkio, M., Grimm, E., 2003. Vascular connections between the receptacle and empty achenes in sunflower (Helianthus annuus L.). J. Exp. Bot., 54(381): 345-348. https://doi.org/10.1093/jxb/erg019
Baker, D., Chapman, G., Standish, M., Bailey, M., 1984. Growth habit in relat ion to assimilate partitioning and some consequences for field bean breeding, Vicia faba: Agronomy, physiology and breeding. Springer, p. 23-28.
Behbahanzadeh, S.A., Akbari, G., Farahani, L., Irannejad, H., 2012. Morphological and qualitative propreties of sunflower seeds in different levels of source and sink reduction. Int. J. Agric.: Res. Rev., 2(5): 618-623.
Bihmidine, S., Hunter III, C.T., Johns, C.E., Koch, K.E., Braun, D.M., 2013. Regulation of assimilate import into sink organs: update on molecular drivers of sink strength. Front. Plant Sci., 4: 177. https://doi.org/10.3389/fpls.2013.00177
Connor, D., Sadras, V., 1992. Physiology of yield expression in sunflower. Field Crops Res., 30(3-4): 333-389.. https://doi.org/10.1016/0378-4290(92)90006-U
English, S., McWilliam, J., Smith, R., Davidson, J., 1979. Photosynthesis and partitioning of dry matter in sunflower. Func. Plant Biol. 6(2): 149-164.https://doi.org/10.1139/b77-338
Epila, J., Hubeau, M., Steppe, K., 2018. Drought Effects on Photosynthesis and Implications of Photoassimilate Distribution in 11C-Labeled Leaves in the African Tropical Tree Species Maesopsis eminii Engl. Forests 9(3): 109. https://doi.org/10.3390/f9030109
Evans, L.T., 1996. Crop evolution, adaptation and yield. Cambridge university press. P. 500.
Farrar, J., Minchin, P., 1991. Carbon partitioning in split root systems of barley: relation to metabolism. J. Exp. Bot., 42(10): 1261-1269. https://doi.org/10.1093/jxb/42.10.1261
Farrar, J., Pollock, C., Gallagher, J., 2000. Sucrose and the integration of metabolism in vascular plants. Plant Sci., 154(1): 1-11. https://doi.org/10.1016/S0168-9452(99)00260-5
Grompone, M.A., 2005. Sunflower oil. In: Frank D. Gunstone , F.D. Ed. Vegetable Oils in Food Technology: Composition, Properties and Uses, Blackwell Publishing; p. 137-167.
Hall, A., Connor, D., Sadras, V., 1995. Radiation-use efficiency of sunflower crops: effects of specific leaf nitrogen and ontogeny. Field Crops Res., 41(2): 65-77. https://doi.org/10.1016/0378-4290(94)00108-O
Hall, A., Connor, D., Whitfield, D., 1989. Contribution of pre-anthesis assimilates to grain-filling in irrigated and water-stressed sunflower crops I. Estimates using labelled carbon. Field Crops Res., 20(2): 95-112. https://doi.org/10.1016/0378-4290(89)90055-5
Hall, A., Whitfield, D., Connor, D., 1990. Contribution of pre-anthesis assimilates to grain-filling in irrigated and water-stressed sunflower crops II. Estimates from a carbon budget. Field Crops Res., 24(3-4): 273-294. https://doi.org/10.1016/0378-4290(90)90044-C
Hernández, L.F., 2015. Spatial constraints also regulates final achene mass in the sunflower (Helianthus annuus L.) capitulum. Int. J. Plant Biol., 6(1): 6014. https://doi.org/10.4081/pb.2015.6014
Ion, V., Dicu, G., Basa, A.-G., Dumbrava, M., Temocico, G., Epure, L.-L., State, D., 2015. Sunflower yield and yield components under different sowing conditions International Conference Agriculture for Life, Life for Agriculture. Elsevier B.V, Romania, p. 44 – 51.
Ishimaru, T., Hirose, T., Matsuda, T., Goto, A., Takahashi, K., Sasaki, H., Terao, T., Ishii, R.-i., Ohsugi, R., Yamagishi, T., 2005. Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L.): comparison of caryopses located at different positions in a panicle. Plant Cell Physiol., 46(4): 620-628. https://doi.org/10.1093/pcp/pci066
Kühbauch, W., Thome, U., 1989. Nonstructural carbohydrates of wheat stems as influenced by sink-source manipulations. J. Plant Physiol., 134(2): 243-250. https://doi.org/10.1016/S0176-1617(89)80063-X
Lee, E., Tollenaar, M., 2007. Physiological basis of successful breeding strategies for maize grain yield. Crop Sci., 47: S-202-S-215. https://doi.org/10.2135/cropsci2007.04.0010IPBS
Lichthardt, C., Chen, T.-W., Stahl, A., Stützel, H., 2020. Co-evolution of sink and source in the recent breeding history of winter wheat in Germany. Front. Plant Sci., 10: 1771. https://doi.org/10.3389/fpls.2019.01771
Lindström, L.I., Pellegrini, C.N., Aguirrezأ،bal, L.A.N., Hernأ،ndez, L.F., 2006. Growth and development of sunflower fruits under shade during pre and early post-anthesis period. Field Crops Res., 96(1): 151-159. https://doi.org/10.1016/j.fcr.2005.06.006
Lloyd, N.D., Canvin, D.T., 1979. Photosynthesis and photorespiration in sunflower selection. Can. J. Bot., 55(24): 3006-3012. https://doi.org/10.1139/b77-338
Ludewig, F., Sonnewald, U., 2016. Demand for food as driver for plant sink development. J. Plant Physiol., 203: 110-115. https://doi.org/10.1016/j.jplph.2016.06.002
Ochogavía, A.C., Novello, M.A., Picardi, L.A., Nestares, G.M., 2017. Identification of suitable reference genes by quantitative real-time PCR for gene expression normalization in sunflower. Plant Omics 10(4).
Pereira, M.L., Berney, A., Hall, A.J., Trápani, N., 2008. Contribution of pre-anthesis photoassimilates to grain yield: Its relationship with yield in Argentine sunflower cultivars released between 1930 and 1995. Field Crops Res., 105(1-2): 88-96. https://doi.org/10.1016/j.fcr.2007.08.002
Pereira, M.L., Trapani, N., Sadras, V., 2000. Genetic improvement of sunflower in Argentina between 1930 and 1995: Part III. Dry matter partitioning and grain composition. Field Crops Res., 67(3): 215-221. https://doi.org/. 10.1016/S0378-4290(00)00096-4
Pereira, M.L., Trápani, N., Sadras, V., 1999. Genetic improvement of sunflower in Argentina between 1930 and 1995: II. Phenological development, growth and source–sink relationship. Field Crops Res., 63(3): 247-254. https://doi.org/10.1016/S0378-4290(99)00041-6
Rafiei, F., Darbaghshahi, M.R.N., Rezai, A., Nasiri, B.M., 2013. Survey of yield and yield components of sunflower cultivars under drought stress. Int. J. Advanced Biol. Biomed. Res., 1(12): 1628-1638.
Rawson, H., Constable, G., 1980. Carbon production of sunflower cultivars in field and controlled environments. I. Photosynthesis and transpiration of leaves, stems and heads. Func. Plant Biol., 7(5): 555-573. https://doi.org/10.1071/PP9800555
Rennie, E.A., Turgeon, R., 2009. A comprehensive picture of phloem loading strategies. Proc. Nat. Acad. Sci., 106(33): 14162-14167. https://doi.org/10.1073/pnas.0902279106
Roitsch, T., Tanner, W., 1996. Cell wall invertase: bridging the gap. Bot. Acta 109(2): 90-93. https://doi.org/10.1111/j.1438-8677.1996.tb00547.x
Sadras, V., Connor, D., Whitfield, D., 1993. Yield, yield components and source-sink relationships in water-stressed sunflower. Field Crops Res., 31(1-2): 27-39. https://doi.org/10.1016/0378-4290(93)90048-R
Saeedipour, S., Moradi, F., 2011. Comparison of the drought stress responses of tolerant and sensitive wheat cultivars during grain filling: impact of invertase activity on carbon metabolism during kernel development. J. Agric. Sci., 3(2): 32.
Seebauer, J.R., Singletary, G.W., Krumpelman, P.M., Ruffo, M.L., Below, F.E., 2010. Relationship of source and sink in determining kernel composition of maize. J. Exp. Bot., 61(2): 511-519. . https://doi.org/10.1093/jxb/erp324
Sharma, R., Smith, E., 1986. Selection for high and low harvest index in three winter wheat populations. Crop Sci., 26(6): 1147-1150. https://doi.org/10.2135/cropsci1986.0011183X002600060013x
Sheligl, H., 1986. Die verwertung orgngischer souren durch chlorella lincht. Planta J., 47: 51.
Sinclair, T.R., 1994. Limits to crop yield? In Boote, K. J., Bennett, J. M., Sinclair, T. R., and Paulsen, G. M., Eds. Physiology and determination of crop yield. New York; American Society of Agronomy. P. 509-532.
Sinsawat, V., Steer, B.T., 1993. Growth of florets of sunflower (Helianthus annuus L.) in relation to their position in the capitulum, shading and nitrogen supply. Field Crops Res., 34(1): 83-100. https://doi.org/10.1016/0378-4290(93)90113-2
Smith, M.R., Rao, I.M., Merchant, A., 2018. Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Front. Plant Sci., 9: 1889. https://doi.org/10.3389/fpls.2018.01889
Steer, B., Hocking, P., Low, A., 1988. Dry matter, minerals and carbohydrates in the capitulum of sunflower (Helianthus annuus): Effects of competition between seeds, and defoliation. Field Crops Res., 18(1): 71-85. https://doi.org/10.1016/0378-4290(88)90060-3
Streeter, J., Jeffers, D., 1979a. Distribution of total non‐structural carbohydrates in soybean plants having increased reproductive load. Crop Sci., 19(5): 729-734. https://doi.org/10.2135/cropsci1979.0011183X001900050046x
Sturm, A., 1999. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol., 121(1): 1-8. https://doi.org/10.1104/pp.121.1.1
Troncoso-Ponce, M.A., Kruger, N.J., Ratcliffe, G., Garcés, R., Martínez-Force, E., 2009. Characterization of glycolytic initial metabolites and enzyme activities in developing sunflower (Helianthus annuus L.) seeds. Phytochem., 70(9): 1117-1122. https://doi.org/10.1016/j.phytochem.2009.07.012
Vear, F., 2016. Changes in sunflower breeding over the last fifty years. Oilseeds Fats Crops Llipids 23(2): 1-8.
Venkateswarlu, B., Visperas, R.M., 1987. Source-sink relationships in crop plants. International Rice Research Institute Publisher, Manila IRPS 125.
Villalobos, F.J., Hall, A.J., Ritchie, J.T., Orgaz, F., 1996. OILCROP-SUN: A development, growth, and yield model of the sunflower crop. Agron. J., 88(3): 403-415. https://doi.org/10.2134/agronj1996.00021962008800030008x
White, A.C., Rogers, A., Rees, M., Osborne, C.P., 2016. How can we make plants grow faster? A source–sink perspective on growth rate. J. Exp. Bot., 67(1): 31-45. https://doi.org/10.1093/jxb/erv447
Yang, J., Zhang, J., Wang, Z., Xu, G., Zhu, Q., 2004. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol., 135(3): 1621-1629. https://doi.org/10.1104/pp.104.041038