Determination of Markers Associated with Important Agronomic Traits of Watermelon (Citrullus lanatus L.)

Document Type : Original Research

Authors
1 Department of Horticulture, Faculty of Agriculture, Hatay Mustafa Kemal University, Hatay, Turkiye.
2 Department of Horticulture, Faculty of Agriculture, Erciyes University, Kayseri, Turkiye.
Abstract
Association analysis using phenotypic information and molecular markers may provide valuable information for molecular breeding and marker-assisted selection. The objectives of this study were to determine markers associated with sugar parameters and important agronomic traits of watermelon and to estimate the level of genetic diversity. Ninety-six watermelon lines were genotyped by combining SSR (Simple Sequence Repeat), ISSR (Inter-Simple Sequence Repeat) and iPBS (Inter-Priming Binding Sites) marker data. These genotypes were also assessed for population structure, Linkage Disequilibrium (LD), and Association Mapping (AM) of sugar parameters and other important agronomic traits. In the analysis, 583 markers had LD values to a certain degree. A general linear model was developed using only the Q matrix showing the population structure in association mapping, a complex linear model using a kinship matrix, and a complex linear model using both the Q and K matrix linear models. The regression model explanation rates for the 26 characters varied from 11.3 to 81.3%. The highest rates of regression model explanation were measured for fruit firmness (81.3%) and fruit height (78.2%). It might be possible to determine the genes associated with these studied characteristics, to contribute to future genetic and breeding studies, and to be used in Marker-Assisted Selection (MAS) studies.

Keywords

Subjects


• AbdoliNasab, M. and Rahimi, M. 2020. Association analysis of traits in watermelon genotypes using molecular markers. Iran J. Sci. Technol. Trans. Sci., 44: 361-369. https://doi.org/10.1007/s40995-020-00837-z
• Alsohim, A.S. and Motawei, M.I. 2014. Genetic diversity and presence of DREB gene in watermelon cultivars and wild type of watermelon based on molecular markers. J. Food Agric. Environ., 12 (3-4): 281-284. https://doi.org/10.1234/4.2014.5398
• Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y. and Buckler, E.S. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19): 2633-2635. https://doi.org/10.1093/bioinformatics/btm308
• Brown, A.C. and Summers, W.L. 1985. Carbohydrate accumulation and color development in watermelon. J. Am. Soc. Hortic. Sci., 110(5): 683-687.
• Cheng, Y., Luan, T., Wang, X., Gao, P., Zhu, Z., Liu, S., Baloch, A.M. and Zhang, Y. 2016. Construction of a genetic linkage map of watermelon (Citrullus lanatus) using CAPS and SSR markers and QTL analysis for fruit quality traits. Sci. Hortic., 202: 25-31. https://doi.org/10.1016/j.scienta.2016.01.004
• Chi, Y.Y., Peng, G., Zhu, Z.C., Luan, F.S., Guiying, L.I. and Peng, Y.U. 2017. The QTL analysis of fruit and seed associated traits in watermelon based on CAPS markers. Sci. Agric. Sin., 50(7): 1282-1293. https://doi.org/10.3864/j.issn.0578-1752.2017.07.011
• Coskun O.F. 2023. Determination of genetic diversity in some pumpkin genotypes using SSR marker technique. Erzincan Uni. J. Sci. Techn., 15(3): 942-952. https://doi.org/10.18185/erzifbed.1113553
• Coskun O.F. 2023. Molecular characterization, population structure analysis, and association mapping of Turkish parsley genotypes using iPBS markers. Horticulturae, 9(3):336. https://doi.org/10.3390/horticulturae9030336
• Coskun, O.F. and Gulsen, O. 2023. Molecular, morphological and phytochemical characterization of some watermelon (Citrullus lanatus L.) genotypes. Unpublished manuscript.
• Dje, Y., Tahi, C.G., Bi, A.I.Z., Baudoin, J.P. and Bertin, P. 2010. Use of ISSR markers to assess genetic diversity of African edible seeded Citrullus lanatus landraces. Sci. Hortic., 124:159-164. https://doi.org/10.1016/j.scienta.2009.12.020
• Doyle, J.J. and Doyle, J.L. 1990. Isolation of plant DNA from fresh tissue. Focus, 12(1): 13-15.
• Du, H.S., Yang, J.J., Chen, B., Zhang, X.F., Zhang, J., Yang, K., Geng, S.S. and Wen, C.L. 2019. Target sequencing reveals genetic diversity, population structure, core-SNP markers, and fruit shape-associated loci in pepper varieties. BMC Plant Biol., 19: 578. https://doi.org/10.1186/s12870-019-2122-2
• Earl, D.A. and Vonholdt, B.M. 2012. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the evanno method. Cons. Genet. Res., 4, 359-361. doi: 10.1007/s12686-011-9548-7
• Ebadi, M., Soltani, F., Mostofi, Y., Alabboud, M. 2022. Analysis of genetic diversity among watermelon [Citrullus lunatus Thunb (Matsum.) and Nakai] accessions by phenotypic and molecular markers. J. Agric. Sci. Technol., 24(2): 429-440.
• Elias, M.S. 2016. Distinguish among some selective watermelons by using ISSR technology. Iraqi J. Agric. Sci., 47(5):1235-1245. https://doi.org/10.36103/ijas.v47i5.501
• Endelman, J. B. 2011. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome, 4(3): 250-255. https://doi.org/10.3835/plantgenome2011.08.0024
• FAOSTAT. 2021. The statistical database (FAOSTAT). FAO, Rome, Italy.
• Flint-Garcia, S.A., Thornsberry, J.M. and Buckler, E.S. 2003. Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol., 54: 357-374.
• Fraser, P.D. and Bramley, P.M. 2004. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res., 43(3): 228-265. https://doi.org/10.1016/j.plipres.2003.10.002
• Khoei, S.G., Mandoulakani, B.A. and Bernousi, I. 2014. Evaluation of watermelon retrotransposon elements in melon. Am.-Eurasian J. Agric. Environ. Sci., 14(6): 516-520. https://doi.org/10.5829/idosi.aejaes.2014.14.06.12343
• Khoei, S.G., Mandoulakani B.A. and Bernousi I. 2015. Genetic diversity in Iranian melon populations and hybrids assessed by IRAP and REMAP markers. J. Agric. Sci. Technol., 17(5): 1267-1277.
• Kwon, Y.S., Oh, Y.H., Yi, S.I., Kim, H.Y., An, J.M., Yang, S.Y., Ok, SH. and Shin, J.S. 2010. Informative SSR markers for commercial variety discrimination in watermelon (Citrullus lanatus). Genes Genom., 32:115-122. https://doi.org/10.1007/s13258-008-0674-x
• Li, B., Lu X., Dou, J., Aslam, A., Gao, L., Zhao, S., He, N. and Liu, W. 2018. Construction of a high-density genetic map and mapping of fruit traits in watermelon (Citrullus lanatus L.) based on whole-genome resequencing. Int. J. Mol. Sci., 19(10): 3268. https://doi.org/10.3390/ijms19103268
• Mardi, M., Naghavi, M. R., Pirseyedi, S. M., Kazemi Alamooti, M., Rashidi Monfared, S., Ahkami, A. H., Omidbakhsh, M. A., Alavi, N. S., Salehi Shanjani, P. and Katsiotis, A. 2011. Comparative assessment of SSAP, AFLP and SSR markers for evaluation of genetic diversity of durum wheat (Triticum turgidum L. var. durum). J. Agric. Sci. Technol., 13: 905-920.
• Mashilo, J., Shimelis, H., Odindo, A. and Amelework, B. 2016. Simple sequence repeat markers reveal genetic diversity within and among landrace collections of citron and dessert watermelon from South Africa. J. Am. Soc. Hortic. Sci., 141(6): 598-608. https://doi.org/10.21273/JASHS03870-16
• Mashilo, J., Shimelis, H., Odindoa, A.O. and Amelework, B. 2017. Genetic diversity and differentiation in citron watermelon [Citrullus lanatus var. citroides] landraces assessed by simple sequence repeat markers. Sci. Hortic., 214: 99-106. https://doi.org/10.1016/j.scienta.2016.11.015
• Morilipinar, E.O., Dalda-Sekerci, A., Coskun, O.F. and Gulsen, O. 2022. Genetic analysis of local pumpkin populations. Int. J. Agric. Nat. Sci., 14(3): 264-272.
• Mujaju, C. and Nybom, H. 2011. Local-level assessment of watermelon genetic diversity in a village in Masvingo Province, Zimbabwe: Structure and dynamics of landraces on farm. Afr. J. Agric. Res., 6(27): 5822-5834. https://doi.org/10.5897/AJAR11.100
• Mujaju, C., Sehic, J. and Nybom, H. 2013. Assessment of EST-SSR markers for evaluating genetic diversity in watermelon accessions from Zimbabwe. Am. J. Plant Sci., 4: 1448-1456.
• Mujaju, C., Zborowska, A., Werlemark, G., Garkava-Gustavssson, L., Andersen, S.B. and Nybom, H. 2011. Genetic diversity among and within watermelon (Citrullus lanatus) landraces in southern Africa. J. Hortic. Sci. Biotechnol., 86:353-358. https://doi.org/10.1080/14620316.2011.11512773
• Nasri, S., Abdollahi Mandoulakani, B., Darvishzadeh, R. and Bernousi, I. 2013. Retrotransposon insertional polymorphism in Iranian bread wheat cultivars and breeding lines revealed by IRAP and REMAP markers. Biochem. Genet., 51: 927-943. https://doi.org/10.1007/s10528-013-9618-5
• Ocal, N., Akbulut, M., Gülşen, O., Yetişir, H., Solmaz, I. and Sari, N. 2014. Genetic diversity, population structure and linkage disequilibrium among watermelons based on peroxidase gene markers. Sci. Hortic., 176:151-161. https://doi.org/10.1016/j.scienta.2014.07.001
• Prothro, J., Sandlin, K., Gill, R., Bachlava, E., White, V., Knapp, S.J. and McGregor, C. 2012. Mapping of the Egusi seed trait locus (eg) and quantitative trait Loci associated with seed oil percentage in watermelon. J. Am. Soc. Hortic. Sci., 137(5): 311-315. https://doi.org/10.21273/JASHS.137.5.311
• Reddy, U.K., Nimmakayala, P., Levi, A., Abburi, V.L., Saminathan, T., Tomason, Y.R.,Vajja, G., Reddy, R., Abburi, L., Wehner, T.C., Ronin, Y., Karol, A. 2014. High-resolution genetic map for understanding the effect of genome-widerecombination rate on nucleotide diversity in watermelon. G3-Genes Genom. Genet.,, 4: 2219-2230. https://doi.org/10.1534/g3.114.012815
• Ren, Y., McGregor, C., Zhang, Y., Gong, G., Zhang, H., Guo, S., Sun, H.,Cai, W., Zhang, J. and Xu, Y. 2014. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol., 14(1): 33. https://doi.org/10.1186/1471-2229-14-33
• Sandlin, K., Prothro, J., Heesacker, A., Khalilian, N., Okashah, R., Xiang, W., Bachlava, E., Caldwell, D.G., Taylor, C.A., Seymour, D.K., White, V., Chan, E., Tolla, G., White, C., Safran, D., Graham, E., Knapp, S. and McGregor, C. 2012. Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]. Theor. Appl. Genet., 125(8): 1603-1618. https://doi.org/10.1007/s00122-012-1938-z
• Singh, D., Singh, R., Sandhu, J. S. and Chunneja, P. 2017. Morphological and genetic diversity analysis of Citrullus landraces from India and their genetic inter relationship with continental watermelons. Sci. Hortic., 218: 240-248. https://doi.org/10.1016/j.scienta.2017.02.013
• Soghani, Z.N., Rahimi, M., Nasab, M.A. and Maleki, M. 2018. Grouping and genetic diversity of different watermelon ecotypes based on agro-morphological traits and ISSR marker. Iheringia - Ser. Bot., 73(1): 53-59. https://doi.org/10.21826/2446-8231201873107
• Sudha, R., Samsudeen, K., Rajesh, M.K. and Niral, V. 2022. Molecular marker assisted confirmation of hybrids in coconut (Cocos nucifera L.). Indian J. Genet. Plant Breed., 82(3): 369-372. https://doi.org/10.31742/ISGPB.82.3.15
• Verma, M. and Arya, L. 2008. Development of EST-SSRs in watermelon (Citrullus lanatus var. lanatus) and their transferability to Cucumis spp. J. Hortic. Sci. Biotechnol., 83(6): 732-736. https://doi.org/10.1080/14620316.2008.11512452
• Yagcioglu, M., Gulsen, O., Yetisir, H., Solmaz, I. and Sari, N. 2016. Preliminary studies of genom-wide association mapping for some selected morphological characters of watermelons. Sci. Hortic., 210: 277-284. https://doi.org/10.1016/j.scienta.2016.08.001
• Zhang, J., Yang, J.J., Zhang, L.K., Luo, J., Zhao, H., Zhang, J.N. and Wen, C.L. 2020. A new SNP genotyping technology target SNP-seq and its application in genetic analysis of cucumber varieties. Sci. Rep., 10: 5623. https://doi.org/10.1038/s41598-020-62518-6