Experimental Validation and Characterization of Sugarcane Genome-Encoded MicroRNAs and Their Targets Using PCR-Based Expressional Methodology

Document Type : Original Research

Authors
1 Colleges, Higher and Technical Education Department, Balochistan, Quetta, Pakistan.
2 Department of Chemistry, University of Balochistan, Quetta 87300, Pakistan.
3 Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan.
4 University of Balochistan
Abstract
MicroRNAs (miRNAs) are typically small, endogenous, non-coding RNAs molecules that regulate gene expression at post-transcriptional level by mRNA degradation or translational repression. They are composed of 18-26 nucleotides and are conserved during evolution for the development of new miRNAs in a variety of plants. Sugarcane (Saccharum officinarum) is generally a valuable food and forage crop grown all over the world. Until now, different sugarcane miRNAs have been characterized for plant development and stress responses. In this research, 50 unique conserved sugarcane miRNAs from 44 different miRNA families have been predicted using a variety of genomics-based tools. The predicted sugarcane miRNAs were validated using a set of 15 randomly chosen primers and RT-PCR. Stem loop secondary structures are created using MFOLD tool. The psRNA-Target algorithm identified 7,976 various protein targets of sof-miRNAs including 55 specific GO terms. They have significant targets in biological, cellular, and molecular functions. Moreover, the sof-miR5205a regulates sulfur compound biosynthetic process and 9653a directs ubiquitin-dependent protein catabolic process. Consequently, the RNA binding and thylakoid membrane are controlled by sof-miR9657b and 2091, respectively. As a result, the outcomes of the novel sugarcane miRNAs target a variety of substantial genes that aid in controlling the environment for sugarcane to produce a higher quality crop.

Keywords

Subjects


Achakzai, H. K., Barozai, M. Y. K., Din, M., Baloch, I. A. and Achakzai, A. K. K. 2018. Identification and annotation of newly conserved microRNAs and their targets in wheat (Triticum aestivum L.). PloS One, 13(7): p.e0200033. https://doi.org/10.1371/journal.pone.0200033.
Achakzai, H. K., Barozai, M. Y. K., Achakzai, A. K. K., Asghar, M. and Din, M. 2019. Profiling of 21 novel microRNA clusters and their targets in an important grain: wheat (Triticum aestivum L.). Pak. J. Bot., 51(1): 133-142.
Fontana, D. C., de Paula, S., Torres, A. G., de Souza, V. H. M., Pascholati, S. F., Schmidt, D. and Dourado Neto, D. 2021. Endophytic fungi: Biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens, 10(5): 570. https://doi.org/10.3390/pathogens10050570.
Awaad, H. A., Negm, A. M. and Abu-hashim, M. 2021. Update, Conclusions, and Recommendations of “Mitigating Environmental Stresses for Agricultural Sustainability in Egypt”. In Mitigating Environmental Stresses for Agricultural Sustainability in Egypt (pp. 561-590). Springer., Cham., DOI: 10.1007/978-3-030-64323-2_21.
Rasheed, A., Hassan, M. U., Aamer, M., Batool, M., Sheng, FANG., Ziming, W. U. and Huijie, L. I. 2020. A critical review on the improvement of drought stress tolerance in rice (Oryza sativa L.). Not Bot Horti Agrobot Cluj Napoca., 48(4): DOI:10.15835/48412128.
Almatroudi, A. 2022. Non-Coding RNAs in Tuberculosis Epidemiology: Platforms and Approaches for Investigating the Genome’s Dark Matter. Int. J. Mol. Sci., 23(8): p.4430. https://doi.org/10.3390/ijms23084430.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Bio., 215(3): pp.403-410. https://doi.org/10.1016/S0022-2836(05)80360-2 PMID: 2231712.
Ambros, V., Bartel, B., Bartel, D. P., Burge, C. B., Carrington, J. C., Chen, X., Dreyfuss, G., Eddy, S. R., Griffiths-Jones, S. A. M., Marshall, M. and Matzke, M. 2003. A uniform system for microRNA annotation. RNA, 9(3): pp.277-279. https://doi.org/10.1261/rna.2183803 PMID: 12592000.
Baloch, I. A., Barozai, M. Y. K. and Din, M. 2018. Bioinformatics prediction and annotation of cherry (Prunus avium L.) microRNAs and their targeted proteins. Turk. J. Bot., 42(4): pp.382-399. https://doi.org/10. 3906/bot-1712-1737.
Baloch, I. A., Barozai, M. Y. K., Din, M. and Achakzai, A. K. K. 2015. Computational identification of 18 microRNAs and their targets in three species of rose. Pak. J. Bot., 47(4): pp.1281-1285.
Barozai, M. Y. K. and Din, M. 2017. Initial screening of plant most conserved MicroRNAs targeting infectious viruses: HBV and HCV. In January 2017, 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST) (pp. 192-196). IEEE.gf.
Barozai, M. Y. K., Qasim, M., Din, M. and Achakzai, A. K. K. 2018. An update on the microRNAs and their targets in unicellular red alga Porphyridium cruentum. Pak. J. Bot., 50(2): pp.817-825.
Barozai, M. Y. K., Ye, Z., Sangireddy, S. R. and Zhou, S. 2018. Bioinformatics profiling and expressional studies of microRNAs in root, stem and leaf of the bioenergy plant switchgrass (Panicum virgatum L.) under drought stress. Agri Gene, 8: pp.1-8.
Bibi, F., Barozai, M. Y. K. and Din, M. 2017. Bioinformatics profiling and characterization of potential microRNAs and their targets in the genus Coffea. Turk. J. Agri. For., 41(3): pp.191-200.
Dai, X. and Zhao, P. X. 2011. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res., 39(suppl_2): pp.W155-W159.
Din, M. and Barozai, M. Y. K. 2014. Profiling microRNAs and their targets in an important fleshy fruit: Tomato (Solanum lycopersicum). Gene, 535(2): pp.198-203. https://doi.org/10.1016/j.gene.2013.11.034 PMID: 24315821.
Din, M., Barozai, M. Y. K. and Baloch, I. A. 2016. Profiling and annotation of microRNAs and their putative target genes in chilli (Capsicum annuum L.) using ESTs. Gene Rep., 5: pp.62-69. https://doi.org/10.1016/j.genrep.2016.08.010.
Eskandarynasab, S., Roudbari, Z. and Bahreini Behzadi, M. R. 2020. Clustering based on the ontology of microRNAs target genes affecting milk production. J. Ani. Envir., 12(3): pp.435-440.
Gasparis, S., Yanushevska, Y. and Nadolska-Orczyk, A. 2017. Bioinformatic identification and expression analysis of new microRNAs from wheat (Triticum aestivum L.). Acta Physiol. Planta., 39(10): pp.1-13.
Ghani, A., Din, M. and Barozai, M. Y. K. 2018. Convergence and divergence studies of plant precursor microRNAs. Pak. J. Bot., 50(3): pp.1085-1091.
Gul, Z., Barozai, M. Y. K. and Din, M. 2017. In-silico based identification and functional analyses of miRNAs and their targets in Cowpea (Vigna unguiculata L.). Aims Genet., 4(02): pp.138-165.
Hajieghrari, B. and Farrokhi, N. 2022. Plant RNA-mediated gene regulatory network. Genomics, 114(1): pp.409-442. https://doi.org/10.1016/j.ygeno.2021.12.020.
Jahan, S., Barozai, M. Y. K., Din, M., Achakzai, H. and Sajjad, A. 2017. Expressional studies of microRNAs in hepatitis B patients of Quetta, Pakistan. Pure Appl. Biol., (PAB), 6(3): pp.1044-1052.
Kirchner, B. 2022. Functional importance of intra-and extracellular microRNAs and their isoforms in blood and milk (Doctoral dissertation, Technische Universität München). https://mediatum.ub.tum.de/1617916.
Md Yusof, K., Rosli, R., Abdullah, M. and Avery-Kiejda, K. A. 2020. The roles of non-coding RNAs in tumor-associated lymph angiogenesis. Cancers., 12(11): p.3290. https://doi.org/10.3390/cancers12113290.
Paolacci, A. R., Tanzarella, O. A., Porceddu, E. and Ciaffi, M. 2009. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mole Biol., 10(1): pp.1-27.
Rani, V. and Sengar, R. S. 2022. Biogenesis and mechanisms of microRNA‐mediated gene regulation. Biotech Bioeng., 119(3): pp.685-692. https://doi.org/10.1002/bit.28029.
Rojas-Pirela, M., Andrade-Alviarez, D., Medina, L., Castillo, C., Liempi, A., Guerrero-Muñoz, J., Ortega, Y., Maya, J. D., Rojas, V., Quiñones, W. and Michels, P. A. 2022. MicroRNAs: master regulators in host–parasitic protist interactions. Open Biol., 12(6): p.210395. https://doi.org/10.1098/rsob.210395.
Shah, S. Q., Barozai, M. Y. K., Din, M., Baloch, I. A. and Wahid, H. A. 2021. 15 RNA secondary structure analysis for abiotic stress resistant and housekeeping genes in Arabidopsis thaliana and Oryza sativa. Pure Appl. Biol., (PAB) 5(3): pp.476-482.
Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., Xu, W. and Su, Z. 2017. agriGO v2. 0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res., 45(W1): pp.W122-W129.
Wahid, H. A., Barozai, M. Y. K. and Din, M. 2016. Functional characterization of fifteen hundred transcripts from Ziarat juniper (Juniperus excelsa M. Bieb). Advan Life Sci., 4(1): pp.20-26.
Xue, A., Li, Z., Cai, M., Zhang, Q., Zhang, X., Ming, R. and Zhang, J. 2017. Identification and Characterization of microRNAs from Saccharum officinarum L by Deep Sequencing. Trop Plant Biol., 10(2): 134-150. https://doi.org/10.1007/s12042-017-9190-y.
Zhang, B., Pan, X. and Stellwag, E. J. 2008. Identification of soybean microRNAs and their targets. Planta, 229(1): pp.161-182. https://doi.org/10.1007/s00425-008-0818-x PMID: 18815805.
Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 31(13): pp.3406-3415. PMID: 12824337.