Enhanced Growth in Cucurbita maxima Seedlings Inoculated with Endophytic Fungi isolated from Rhizophora racemosa Rhizosphere

Document Type : Original Research

Authors
1 Department of Botany, Faculty of Biological Sciences, Akwa Ibom State University, Nigeria.
2 Regional Centre of Agricultural Research of Sidi Bouzid, CRRA, Gafsa Road Km 6, B. P. 357, 9100, Sidi Bouzid, Tunisia.
3 Department of Plant Protection, College of Agriculture, University of Basrah, Iraq.
4 Department of Agricultural Engineering, Khwaja Fareed, University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
5 Regional Centre of Agricultural Research of Sidi Bouzid, CRRA, Gafsa Road Km 6, B.P. 357, 9100, Sidi Bouzid, Tunisia.
Abstract
Endophytic fungi are considered an eco-friendly and bio-safe alternative to increase agricultural productivity. The study objectives were to isolate and identify endophytic fungi from the roots of Rhizophora racemosa and to assess their effect on the growth of Cucurbita maxima plants. Molecular identification of the endophytic fungal isolates revealed five fungal species: Aspergillus aculeatus, Aspergillus fumigatus, Fusarium equiseti, Penicillium citrinum, and Talaromyces albobiverticillius. A. aculeatus induced the best improvement rate of plant development with an increase of shoot length (159 %), petiole length (171%), internode length (155%), leaf number (133%) and leaf area (149%)at 84 days after the fungal treatment. This research highlights the importance of A. aculeatus, which can be an eco-friendly bio-fertilizer that can enhance the production of Cucurbita maxima and improve the agricultural sector. To confirm its effectiveness, experiments must be conducted in fields and greenhouses.

Keywords

Subjects


1. Alam, B., Li, J., Ge, Q., Khan, M. A., Gong, J., Mehmood, S., Yuán Y. and Gong W. 2021. Endophytic fungi: From symbiosis to secondary metabolite communications or vice versa? Front. Plant. Sci., 12: 791033.
2. Argumedo-Delira, R., Gómez-Martínez, M.J. and Mora-Delgado, J. 2022. Plant growth promoting filamentous fungi and their application in the fertilization of pastures for animal consumption. Agr. 12: 3033.
3. Brader, G., Compant, S., Vescio, K., Mitter, B., Trognitz, F., Ma, L.J. and Sessitsch, A. 2017. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu. Rev. Phytopathol., 55: 61-83.
4. Buommino, E., Paoletti, I., De Filippis, A., Nicoletti, R., Ciavatta, M.L., Menegozzo, S., Menegozzo, M. and Tufano, M.A. 2010. 3-OMethylfunicone, a metabolite produced by Penicillium pinophilum, modulates ERK1/2 activity, affecting cell motility of human mesothelioma cells. Cell. Prolif., 43: 114-123.
5. Chadha, N., Mishra, M., Rajpal, K., Bajaj, R., Choudhary, D.K. and Varma, A. 2015. An ecological role of fungal endophytes to ameliorate plants under biotic stress. Arch. Microbiol., 197: 869-881.
6. Chen, W.H., Wu, S.J., Sun, X.L., Feng, K.M., Rahman, K., Tan, H.Y. and Han, T. 2020. High-throughput sequencing analysis of endophytic fungal diversity in cynanchum sp. S. Afr. J. Bot., 134: 349-358.
7. Chowdappa, S., Jagannath, S., Konappa, N., Udayashankar, A.C. and Jogaiah, S. 2020. Detection and characterization of antibacterial siderophores secreted by endophytic fungi from Cymbidium aloifolium. Biomol. J., 10: 1412.
8. Costa, I.P., Maia, L.C. and Cavalcanti, M.A. 2012. Diversity of leaf endophytic fungi in mangrove plants of northeast Brazil. Braz. J. Microbiol., 43: 1165-1173.
9. Da Silva, J.M., Montaldo, Y.C., De Almeida, A.C.P.S., Dalbon, V.A., Acevedo, J.P.M., Dos Santos, T.M.C. and De Andrade Lima, G.S. 2021. Rhizospheric fungi to plant growth promotion: A review. J. Agric. Stud., 9: 411-425.
10. De Souza Sebastianes, F.L., Romão-Dumaresq, A.S., Lacava, P.T., Harakava, R., Azevedo, J. L., De Melo, I.S. and Pizzirani-Kleiner, A.A. 2013. Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr. Genet., 59: 153-166.
11. Devi, R., Kaur, T., Kour, D., Rana, K.L., Yadav, A. and Yadav, A.N. 2020. Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microb. Biosyst., 5: 21-47.
12. Gao, F.K., Dai, C.C. and Liu, X.Z. 2010. Mechanisms of fungal endophytes in plant protection against pathogens. Afr. J. Microbiol. Res., 4: 1346-1351.
13. Germain, S.G. and Summerbell, R. 2010. Identifying filamentous fungi: A clinical laboratory handbook. 2nd Edition, Star Publishing Co, Belmont.
14. Gómez-Muñoz, B., Jensen, L.S., De Neergaard, A., Richardson, A.E. and Magid, J. 2018. Effects of Penicillium bilaii on maize growth are mediated by available phosphorus. Pla. Soil., 431: 159-173.
15. Hrynkiewicz, K., Baum, C. and Leinweber, P. 2010. Density, metabolic activity, and identity of cultivable rhizosphere bacteria on Salix viminalis in disturbed arable and landfill soils. J. Plant. Nutr. Soil. Sci., 173: 747-756.
16. Huzefa, A.R., Andrew N.M., Cedric J.P. and Nicholas H.O. 2017. Fungal identification using molecular tools: a primer for the natural products research community. J. Nat. Prod., 80: 756-770.
17. Javed, A.R.O.O.J., Shah, A.H., Hussain, A.N.W.A.R., Shinwari, Z.K., Khan, S.A., Khan, W.A.J.I.H.A. and Jan, S.A. 2020. Potential of endophytic fungus Aspergillus terreus as potent plant growth promoter. Pak. J. Bot., 52: 1083-1086.
18. Khan, A.L., Hamayun, M., Kim, Y.H., Kang, S.M., Lee, J.H. and Lee, I.J. 2011. Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem., 46: 440-447.
19. Khan, A.L., Hamayun, M., Kang, S.M., Kim, Y.H., Jung, H.Y., Lee, J.H. and Lee, I.J. 2012. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol., 12: 1-14.
20. Khan, A.L., Waqas, M., Hamayun, M., Al-Harrasi, A., Al-Rawahi, A. and Lee, I.J. 2013. Co-synergism of endophyte Penicillium resedanum LK6 with salicylic acid helped Capsicum annuum in biomass recovery and osmotic stress mitigation. BMC Microbiol., 13: 1-13.
21. Koukol, O., Kolarık, M., Kolarova, Z. and Baldrian, P. 2012. Diversity of foliar endophytes in wind-fallen Picea abies trees. Fungal. Divers., 54: 69-77.
22. Li, H.Y., Shen, M., Zhou, Z.P., Li, T., Wei, Y. and Lin, L. 2012a. Diversity and cold adaptation of endophytic fungi from five dominant plant species collected from the Baima Snow Mountain, Southwest China. Fungal. Divers., 54: 79-86.
23. Li, H.J., Xie, Y.L., Xie, Z.L., Chen, Y., Lam, C.K. and Lan, W.J. 2012b. Chondrosterins A–E, triquinane-type sesquiterpenoids from soft coral-associated fungus Chondrostereum sp. Mar. Drugs., 10: 627-638.
24. Li, D., Xu, Y., Shao, C.L., Yang, R.Y., Zheng, C.J., Chen, Y.Y., Fu, X.M., Qian, P.Y., She, Z.G., De Voogd, N.J., Wang, C.Y. 2012c. Antibacterial bisabolane-type sesquiterpenoids from the sponge-derived fungus Aspergillus sp. Mar. Drugs., 10: 234-241.
25. Li, X., Sun, X., Wang, G., Amombo, E., Zhou, X., Du, Z., Zhang, Y., Xie, Y. and Fu, J. 2019. Inoculation with Aspergillus aculeatus alters the performance of perennial ryegrass under phosphorus deficiency. J. Amer. Soc. Hort. Sci., 144: 182-192.
26. Li, X., Zhao, C, Zhang, T., Wang, G., Amombo, E., Xie, Y. and Fu, J. 2021. Exogenous Aspergillus aculeatus enhances drought and heat tolerance of perennial ryegrass. Front. Microbiol., 12: 593722.
27. Liu, A.R., Chen, S.C., Jin, W.J., Zhao, P.Y., Jeewon, R. and Xu, T. 2012. Host specificity of endophytic Pestalotiopsis populations in mangrove plant species of South China. Afr. J. Microbiol. Res., 6: 6262-6269.
28. Moitinho, M.A., Chiaramonte, J.B., Bononi, L., Gumiere, T., Melo, I.S. and Taketani, R.G. 2022. Fungal succession on the decomposition of three plant species from a Brazilian mangrove. Sci. Rep., 12: 14547.
29. Mohamed Zubi, W.S., Mohd, M.H., Mohamed Nor, N.M.I., Zakaria, L. 2021. Fusarium species in mangrove soil in Northern Peninsular Malaysia and the soil physico-chemical properties. Microorgani., 9: 497.
30. Osman, Y., Gebreil, A., Mowafy, A.M., Anan, T.I. and Hamed, S.M. 2019. Characterization of Aspergillus niger siderophore that mediates bioleaching of rare earth elements from phosphorites. World J. Microbiol. Biotechnol., 35:1-10.
31. Poveda, J., Eugui, D., Abril-Urías, P. and Velasco, P. 2021. Endophytic fungi as direct plant growth promoters for sustainable agricultural production. Symbi., 85: 1-19.
32. Rashmi, M., Kushveer, J.S. and Sarma, V.V. 2019. A worldwide list of endophytic fungi with notes on ecology and diversity. Myco., 10: 798-1079.
33. Rhouma, A., Khrieba, M.I., Salih, Y.A., Rhouma, H. and Bedjaoui, H. 2021. Efficacy of fungicides for control of powdery mildew on grapevines in Chott Sidi Abdel Salam oasis, southeastern Tunisia. J. Oasis. Agricul. Sus. Dev., 3: 1-7.
34. Rhouma, A., Mehaoua, M. S., Mougou, I., Rhouma, H., Shah, K.K. and Bedjaoui, H. 2023. Combining melon varieties with chemical fungicides for integrated powdery mildew control in Tunisia. Eur. J. Plant. Pathol., 165: 189-201.
35. Sievers, F. and Higgins, D.G. 2017. Clustal Omega for making accurate alignments of many protein sequences. Prot. Sci., 27: 135-145.
36. Tamura, K., Stecher, G. and Peterson, D. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 30: 2725-2729.
37. Xie, Y., Sun, X., Feng, Q., Luo, H., et al. 2019. Comparative physiological and metabolomic analyses reveal mechanisms of Aspergillus aculeatus-mediated abiotic stress tolerance in tall fescue. Plant Physiol. Biochem., 142: 342-350.