Critical Crop Load Threshold in Nutrition and Biennial Bearing of Apple Trees

Document Type : Original Research

Authors
Horticulture Program, Department of Crop and Livestock Production, Food Agriculture and Livestock School, Burdur, Burdur Mehmet Akif Ersoy University, Turkey.
Abstract
Crop load regulation is vital for achieving excellence in orchards, particularly in terms of consistent yields and high-quality fruit. It also has a direct impact on tree nutrition. The objective of this study was to investigate the relationship between crop load and tree nutrition using segment linear regression models. The focus was on identifying any breakpoints in this relationship and exploring the connection between leaf nutrient contents and fruit quality characteristics. Additionally, the study aimed to determine the critical crop load level that influences biennial bearing. The research was conducted in a high-density 'Golden Delicious'/M.9 apple orchard located in the Lake Region of Turkey over three consecutive years (2013-2015). Twenty-four different crop load levels were examined to assess the impact of the number of fruits on leaf nutrient contents. The critical threshold levels were determined as follows: potassium [0.91 kg cm-2 Trunk Cross-Sectional Area (TCSA)], phosphorus (0.96 kg cm-2 TCSA), magnesium (0.97 kg cm-2 TCSA), manganese (0.99 kg cm-2 TCSA), zinc (1.0 kg cm-2 TCSA), and iron (1.15 kg cm-2 TCSA). This suggests that a crop load ranging from 3.71 to 4.69 fruit/cm2 TCSA could be considered critical depending on the specific nutrient in tree nutrition. The results revealed significant negative correlations between leaf mineral contents and overall fruit quality characteristics. Moreover, the critical crop load threshold for biennial bearing (0.77 kg cm-2 TCSA) was found to be lower than the nutrient threshold. Building on previous studies, this research significantly contributes by clarifying the critical crop load level at which a sudden change occurs in macro- and micro-nutrients, as well as biennial bearing.

Keywords

Subjects


1. Alcobendas, R., Miras-Avalos, J. M., Alarcon, J. J., Pedrero, F. and Nicolas, E. 2012. Combined Effects of Irrigation, Crop Load and Fruit Position on Size, Color and Firmness of Fruits in An Extra-Early Cultivar of Peach. Sci. Hortic., 142:128-135. https://doi.org/10.1016/j.scienta.2012.05.003.
2. Anthony, B., Serra, S. and Musacchi, S. 2019. Optimizing Crop Load for New Apple Cultivar: “WA38”. Agronomy, 9:107. https://doi.org/10.3390/agronomy9020107.
3. Atay, A. N., Koyuncu, F. and Atay, E. 2013. Relative Susceptibility of Selected Apple Cultivars to Alternate Bearing. J. Biol. Environ. Sci., 7(20):81-86.
4. Atay, E. 2016. Which Nutrients in The Leaf Decrease Linearly as Fruit Load Increases in Apples? A Preliminary Study. Presented at International Academic Research Congress, Antalya, Turkey, June 2016, 656-659. Koksal, O (ed), Pegem Akademy. e-ISBN 978-605-318-752-3.
5. Atay, E. 2017. A New Insight into Pruning Strategy in The Biennial Cycle of Fruiting: Vegetative Growth at Shoot and Whole-Tree Level, Yield and Fruit Quality of Apple. Not. Bot. Horti. Agrobot., 45(1):232-237. https://doi.org/10.15835/nbha45110527.
6. Atay, E., Crété, X., Loubet, D. and Lauri, P. E. 2021. Effects of Different Crop Loads on Physiological, Yield and Fruit Quality of 'JoyaTM' Apple Trees: High Crop Load Decreases Maximum Daily Trunk Diameter and Does Not Affect Stem Water Potential. Int. J. Fruit Sci., 21(1):955-969. https://doi.org/10.1080/15538362.2021.1951922.
7. Blanco, A., Pequerul, A., Val, J., Monge. E. and Gomez Aparisi, J. 1995. Crop-Load Effects on Vegetative Growth, Mineral Nutrient Concentration and Leaf Water Potential in ‘Catherine’ Peach. J. Hortic. Sci., 70(4):623-629. https://doi.org/10.1080/14620316.1995.11515335.
8. Brown, P. H. and Hu, H. 1996. Phloem Mobility of Boron is Species Dependent: Evidence for Phloem Mobility in Sorbitol-Rich Species. Ann. Bot., 77:497-505. https://doi.org/10.1006/anbo.1996.0060.
9. Chen, X., Humphreys, J. L., Ru, Y., He, Y., Wu, F., Mai, J., Li, M., Li, Y., Shabala, S., Yu, M. and Smith, S.M. 2022. Jasmonate Signaling and Remodeling of Cell Wall Metabolism Induced by Boron Deficiency in Pea Shoots. Environ. Exp. Bot., 201:104947. https://doi.org/10.1016/j.envexpbot.2022.104947.
10. Choi, S., Park, D., Kang, S. and Cho, Y. 2010. Effect of Fruit-Load on the Growth, Absorption, and Partitioning of Inorganic Nutrients in Young ‘Fuyu’ Persimmon Trees. Sci. Hortic., 126(3):408-412. https://doi.org/10.1016/J.SCIENTA.2010.07.035.
11. Ding, N., Chen, Q., Zhu, Z., Peng, L., Ge, S. and Jiang, Y. 2017. Effects of Crop Load on Distribution and Utilization of 13C and 15N and Fruit Quality for Dwarf Apple Trees. Sci. Rep., 7:14172. https://doi.org/10.1038/s41598-017-14509-3.
12. Domkin, D., Richter, H. O., Zetterlund, C. and Lundqvist, L. O. 2016. Effect of Reduced Visual Acuity on Precision of Two-Dimensional Tracing Movements. J. Optom., 9(2):93-101. https://doi.org/10.1016/j.optom.2015.03.003.
13. Drazeta, L., Lang, A., Hall, A. J., Volz, R. K. and Jameson, P. E. 2004. Causes and Effects of Changes in Xylem Functionality in Apple Fruit. Ann. Bot., 93:275-282. https://doi:10.1093/aob/mch040.
14. Dris, R., Niskanen, R. and Fallahi, E. 1999. Relationships Between Leaf and Fruit Minerals and Fruit Quality Attributes of Apples Grown Under Northern Conditions. J. Plant Nutr., 22(12):1839-1851. https://doi.org/10.1080/01904169909365760.
15. Elgar, H., Lallu, N. and Watkins, C. 1999. Harvest Date and Crop Load Effects on A Carbon Dioxide-Related Storage Injury of 'Braeburn' Apple. Hortscience, 34(2):305-309. https://doi.org/10.21273/HORTSCI.34.2.305.
16. Epstein, E. and Bloom, A. J. 2005. Mineral Nutrition of Plants: Principles and Perspectives. Sinauer Associates Inc., Sunderland, MA.
17. Etesami, H. and Jeong, B. R. 2020. Importance of Silicon in Fruit Nutrition: Agronomic and Physiological Implications. In: Srivastava, A. K. and Hu, C. (ed) Fruit Crops: Diagnosis and Management of Nutrient Constraints. Elsevier, Amsterdam, Netherlands, pp 255-278. https://doi.org/10.1016/B978-0-12-818732-6.00019-8.
18. FAO. 2023. FAOSTAT Database Collections. Food and Agriculture Organization of the United Nations, Rome. Available: http://www.fao.org/faostat/en/#data/ [date of access: 03.02.2023].
19. Goldschmidt, E. E. 1999. Carbohydrate Supply as A Critical Factor for Citrus Fruit Development and Productivity. HortScience, 34(6):1020-1024. https://doi.org/10.21273/HORTSCI.34.6.1020.
20. Grimstead, J. P. 2017. Identification of Thresholds in Benthic Macroinvertebrate Communities Associated with Agricultural Land Cover. Electronic Thesis and Dissertation Repository. 5095. https://ir.lib.uwo.ca/etd/5095.
21. Gündeşli, M. A., Kafkas, N. B., Güney, M. and Kafkas, S. 2021. Seasonal Changes in The Mineral Nutrient Concentrations of Different Plant Organs of Pistachio Trees in Alternate Bearing “On” and “Off” Years. Erwerbs-Obstbau, 63:279-292. https://doi.org/10.1007/s10341-021-00567-5.
22. Hansen, P. 1971. The Effects of Cropping on Uptake, Contents, and Distribution of Nutrients in Apple Leaves. Tidsskr. Planteavl., 75:615-625.
23. Hansen, P. 1973. The Effect of Cropping on the Growth and Uptake of Nutrients by Apple Trees at Different Levels of Nitrogen, Potassium, Magnesium and Phosphorus. Acta Agric. Scand., 23:87-92. https://doi.org/10.1080/00015127309436228.
24. Jivan, C. and Sala, F. 2014. Relationship Between Tree Nutritional Status and Apple Quality. Hortic. Sci. (Prague), 41:1-9. https://doi.org/10.17221/152/2013-HORTSCI.
25. Korosi, J. B., Paterson, A. M., Desellas, A. M. and Smol, J. P. 2008. Linking Mean Body Size of Pelagic Cladocera to Environmental Variables in Precambrian Shield Lakes: A Paleolimnological Approach. J. Limnol., 67(1):22-34. https://doi.org/10.4081/jlimnol.2008.22.
26. Mousavi, S. M. and Motesharezadeh, B. 2020. Boron Deficiency in Fruit Crops. In: Srivastava, A. K. and Hu, C. (ed) Fruit Crops: Diagnosis and Management of Nutrient Constraints. Elsevier, Amsterdam, Netherlands, pp 191-210. https://doi.org/10.1016/B978-0-12-818732-6.00015-0.
27. Meszaros, M., Hnátková, H., Conka, P. and Námestek, J. 2021. Linking Mineral Nutrition and Fruit Quality to Growth Intensity and Crop Load in Apple. Agronomy, 11:506. https://doi.org/10.3390/agronomy11030506.
28. Monselise, S. P. and Goldschmidt, E. E. 1982. Alternate Bearing in Fruit Trees. Hortic. Rev., 4:128-173.
29. Naschitz, S., Naor, A., Genish, S., Wolf, S. and Goldschmidt, E. E. 2010. Internal Management of Non-Structural Carbohydrate Resources in Apple Leaves and Branch Wood Under a Broad Range of Sink and Source Manipulations. Tree Physiol., 30:715-727. https://doi.org/10.1093/treephys/tpq028.
30. Neilsen, G. H. and Neilsen, D. 2003. Nutritional Requirements of Apple. In: Ferree, D. C. and Warrington, I. J. (ed) Apples: Botany, production and uses. CABI Publishing, Cambridge, pp 267-302.
31. Neilsen, G. H., Neilsen, D., Guak, S. H. and Forge, T. 2015. The Effect of Deficit Irrigation and Crop Load on Leaf and Fruit Nutrition of Fertigated ‘Ambrosia’/‘M.9’ Apple. HortScience, 50(9):1387-1393. https://doi.org/10.21273/HORTSCI.50.9.1387.
32. Nestby, R. and Retamales, J. B. 2020. Diagnosis and Management of Nutritional Constraints in Berries. In: Srivastava, A. K. and Hu, C. (ed) Fruit Crops: Diagnosis and Management of Nutrient Constraints. Elsevier, Amsterdam, Netherlands, pp 567-582. https://doi.org/10.1016/B978-0-12-818732-6.00040-X.
33. Ngao, J., Martinez, S., Marquier, A., Bluy, S., Saint-Joanis, B., Costes, E. and Pallas, B. 2021. Spatial Variability in Carbon and Nitrogen Related Traits in Apple Trees: The Effects of the Light Environment and Crop Load. J. Exp. Bot., 72(5):1933-1945. https://doi.org/10.1093/jxb/eraa559.
34. Oosterbaan, R. J. 2011. SegReg: Segmented linear Regression with Breakpoint and Confidence Intervals. Available: http://www.waterlog.info/segreg.htm [date of access: 25.10.2022].
35. Parent, L. E., Rozane, D. E, de Deus, J. A. L. and Natale, W. 2020. Diagnosis of Nutrient Composition in Fruit Crops: Major Developments. In: Srivastava, A. K. and Hu, C. (ed) Fruit Crops: Diagnosis and Management of Nutrient Constraints. Elsevier, Amsterdam, Netherlands, pp 145-156. https://doi.org/10.1016/B978-0-12-818732-6.00012-5.
36. Pellerin, B. P., Buszard, D., Iron, D., Embree, C. G., Marini, R. P., Nichols, D. S., Neilsen, G. H. and Neilsen, D. 2011. A Theory of Blossom Thinning to Consider Maximum Annual Flower Bud Numbers on Biennial Apple Trees. HortScience, 46(1):40-42. https://doi.org/10.21273/HORTSCI.46.1.40.
37. R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
38. Reig, G., Lordan, J., Fazio, G., Grusak, M. A., Hoying, S., Cheng, L., Francescatto, P. and Robinson, T. 2018. Horticultural Performance and Elemental Nutrient Concentrations on ‘Fuji’ Grafted on Apple Rootstocks Under New York State Climatic Conditions. Sci. Hortic., 227:22-37. https://doi.org/10.1016/j.scienta.2017.07.002.
39. Robinson, T. L. 2008. Crop Load Management of New High-Density Apple Orchards. NYFQ, 16(2):3-7.
40. Robinson, T., Lakso, A., Greene, D. and Hoying, S. 2013. Precision Crop Load Management. NYFQ, 21(2):3-9.
41. Samuoliene, G., Viskeliene, A., Sirtautas, R. and Kviklys, D. 2016. Relationships Between Apple Tree Rootstock, Crop-Load, Plant Nutritional Status and Yield. Sci. Hortic., 211:167-173. https://doi.org/10.1016/j.scienta.2016.08.027.
42. Sidhu, R. S., Bound, S. A. and Hunt, I. 2022. Crop Load and Thinning Methods Impact Yield, Nutrient Content, Fruit Quality, and Physiological Disorders in ‘Scilate’ Apples. Agronomy, 12(9):1989. https://doi.org/10.3390/agronomy12091989.
43. Silber, A., Israeli, Y., Levi, M., Keinan, A., Chudi, G., Golan, A., Noy, M., Levkovitch, I., Narkis, K., Naor, A. and Assouline, S. 2013. The Roles of Fruit Sink in The Regulation of Gas Exchange and Water Uptake: A Case Study for Avocado. Agric. Water Manag., 116:21-28. https://doi.org/10.1016/j.agwat.2012.10.006.
44. Smith, P. F. 1962. Mineral Analysis of Plant Tissues. Annu. Rev. Plant Physiol., 13(1):81-108. https://doi.org/10.1146/annurev.pp.13.060162.000501.
45. Stander, P. J., Barry, G. H. and Cronjé, P. J. R. 2018. The Significance of Macronutrients in Alternate Bearing ‘Nadorcott’ Mandarin Trees. Hortscience, 53(11):1600-1609. https://doi.org/10.21273/HORTSCI13230-18.
46. Suo, G., Xie, Y., Zhang, Y., Cai, M., Wang, X. and Chuai, J. 2016. Crop Load Management (CLM) for Sustainable Apple Production in China. Sci. Hortic., 211:213-219. https://doi.org/10.1016/J.SCIENTA.2016.08.029.
47. Toselli, M., Baldi, E., Cavani, L. and Sorrenti, G. 2020. Nutrient Management in Fruit Crops: An Organic Way. In: Srivastava, A. K. and Hu, C. (ed) Fruit Crops: Diagnosis and Management of Nutrient Constraints. Elsevier, Amsterdam, Netherlands, pp 379-392. https://doi.org/10.1016/B978-0-12-818732-6.00027-7.
48. TURKSTAT. 2023. Population, Education, Agriculture. Turkish Statistical Institute, Ankara. Available: http://www.tuik.gov.tr/ [date of access: 03.02.2023].
49. Urban, L., Lechaudel, M. and Lu, P. 2004. Effect of Fruit Load and Girdling on Leaf Photosynthesis in Mangifera indica L. J. Exp. Bot., 55:2075-2085. https://doi.org/10.1093/jxb/erh220.
50. Verdenal, T., Spangenberg, J. E., Zufferey, V., Dienes-Nagy, A., Viret, O., van Leeuwen, C. and Spring, J. L. 2020. Impact of Crop Load on Nitrogen Uptake and Reserve Mobilization in Vitis vinifera. Funct. Plant Biol., 47:744-756. https://doi.org/10.1071/FP20010.
51. Vilhena, N. Q., Quiñones, A., Rodríguez, I., Gil, R., Fernández-Serrano, P. and Salvador, A. 2022. Leaf and Fruit Nutrient Concentration in Rojo Brillante Persimmon Grown Under Conventional and Organic Management, and its Correlation with Fruit Quality Parameters. Agronomy, 12:237. https://doi.org/10.3390/agronomy12020237.
52. Wu, X., Wang, L. and Roh, M. S. 2021. Changes in Soluble and Non-Cellulosic Carbohydrates Composition and Calcium Content During Stem Tip Cuttings Propagation and Production of Eustoma grandiflorum. Sci. Hortic., 288:110216. https://doi.org/10.1016/j.scienta.2021.110216.
53. Wünsche, J. N. and Ferguson, I. B. 2005. Crop Load Interactions in Apple. Hortic. Rev., 31:231-290.
54. Yang, X., Chen, L. S. and Cheng, L. 2021. Leaf Photosynthesis and Carbon Metabolism Adapt to Crop Load in ‘Gala’ Apple Trees. Horticulture, 7:47. https://doi.org/10.3390/horticulturae7030047.