Bahar, E. et al. 2012. Thermal and Mechanical Properties of Polypropylene Nanocomposite Materials Reinforced with Cellulose Nano Whiskers. Journal of Applied Polymer Science, 125:2882-2889.
Baysal, G., Demirci, C. and Özpinar, H. 2023 Proporties and Synthesis of Biosilver Nanofilms for Antimicrobial Food Packaging. Polymers 15. doi:10.3390/polym15030689
Baysal, G., Olcay, H. S., Keresteci, B. and Özpinar, H. 2022. The Antioxidant and Antibacterial Properties of Chitosan Encapsulated with the Bee Pollen and the Apple Cider Vinegar. J Biomater Sci Polym Ed, 33:995-1011.
Cé, N., Noreña, C. P. Z. and Brandelli, A. 2012. Antimicrobial Activity of Chitosan Films Containing Nisin, Peptide P34, and Natamycin. CyTA - Journal of Food, 10:21-26.
Celebi, H. and Kurt, A. 2015. Effects of Processing on the Properties of Chitosan/Cellulose Nanocrystal Films. Carbohydrate polymers, 133:284-293.
Choo, K. W., Dhital, R., Mao, L., Lin, M. and Mustapha, A. 2021. Development of Polyvinyl Alcohol/Chitosan/Modified Bacterial Nanocellulose Films Incorporated with 4-Hexylresorcinol for Food Packaging Applications. Food Packaging and Shelf Life, 30:100769.
Dehnad, D., Emam-Djomeh, Z., Mirzaei, H., Jafari, S.-M. and Dadashi, S. 2014a. Optimization of Physical and Mechanical Properties for Chitosan–Nanocellulose Biocomposites. Carbohydrate Polymers, 105:222-228.
Dehnad, D., Mirzaei, H., Emam-Djomeh, Z., Jafari, S.-M. and Dadashi, S. 2014b. Thermal and Antimicrobial Properties of Chitosan–Nanocellulose Films for Extending Shelf Life of Ground Meat. Carbohydrate polymers, 109:148-154.
Fernandes, S. C. M., Freire, C. S. R., Silvestre, A. J. D., Pascoal Neto, C., Gandini, A., Berglund, L. A. and Salmén, L. 2010. Transparent Chitosan Films Reinforced with a High Content of Nanofibrillated Cellulose. Carbohydrate Polymers, 81:394-401.
Firouzabadi, F. B., Noori, M., Edalatpanah, Y. and Mirhosseini, M. 2014. Zno Nanoparticle Suspensions Containing Citric Acid as Antimicrobial to Control Listeria Monocytogenes, Escherichia Coli, Staphylococcus Aureus and Bacillus Cereus in Mango Juice. Food Control, 42:310-314.
García, A., Labidi, J., Belgacem, M. N. and Bras, J. 2017. The Nanocellulose Biorefinery: Woody Versus Herbaceous Agricultural Wastes for Ncc Production. Cellulose, 24:693-704.
Garside, P. and Wyeth, P. 2003. Identification of Cellulosic Fibres by Ftir Spectroscopy - Thread and Single Fibre Analysis by Attenuated Total Reflectance. Studies in Conservation, 48:269-275.
Gedarawatte, S. T. G., Ravensdale, J. T., Al-Salami, H., Dykes, G. A. and Coorey, R. 2021. Antimicrobial Efficacy of Nisin-Loaded Bacterial Cellulose Nanocrystals against Selected Meat Spoilage Lactic Acid Bacteria. Carbohydrate Polymers, 251:117096.
Huq, T., Riedl, B., Bouchard, J., Salmieri, S. and Lacroix, M. 2014. Microencapsulation of Nisin in Alginate-Cellulose Nanocrystal (Cnc) Microbeads for Prolonged Efficacy against Listeria Monocytogenes. Cellulose, 21:4309-4321.
Ibarguren, C., Audisio, M. C., Sham, E. L., Müller, F. A. and Farfan Torres, E. M. 2017. Adsorption of Nisin on Montmorillonite: A Concentration Strategy. Journal of Food Processing and Preservation, 41:e12788.
Khalil, H. P. S. A., Ismail, H., Rozman, H. D. and Ahmad, M. N. 2001. The Effect of Acetylation on Interfacial Shear Strength between Plant Fibres and Various Matrices. European Polymer Journal, 37:1037-1045.
Khan, A., Gallah, H., Riedl, B., Bouchard, J., Safrany, A. and Lacroix, M. 2016. Genipin Cross-Linked Antimicrobial Nanocomposite Films and Gamma Irradiation to Prevent the Surface Growth of Bacteria in Fresh Meats. Innovative Food Science & Emerging Technologies, 35:96-102.
Khan, A. et al. 2012. Mechanical and Barrier Properties of Nanocrystalline Cellulose Reinforced Chitosan Based Nanocomposite Films. Carbohydrate Polymers, 90:1601-1608.
Le Troedec, M. et al. 2008. Influence of Various Chemical Treatments on the Composition and Structure of Hemp Fibres. Composites Part A: Applied Science and Manufacturing, 39:514-522.
Leceta, I., Guerrero, P., Ibarburu, I., Dueñas, M. T. and De La Caba, K. 2013. Characterization and Antimicrobial Analysis of Chitosan-Based Films. Journal of Food Engineering, 116:889-899.
Lu, Q., Yu, X., Yagoub, A. E. A., Wahia, H. and Zhou, C. 2021. Application and Challenge of Nanocellulose in the Food Industry. Food Bioscience, 43:101285.
Meydanju, N., Pirsa, S. and Farzi, J. 2022. Biodegradable Film Based on Lemon Peel Powder Containing Xanthan Gum and Tio2–Ag Nanoparticles: Investigation of Physicochemical and Antibacterial Properties. Polymer Testing, 106:107445.
Mirhosseini, M. and Afzali, M. 2016. Investigation into the Antibacterial Behavior of Suspensions of Magnesium Oxide Nanoparticles in Combination with Nisin and Heat against Escherichia Coli and Staphylococcus Aureus in Milk. Food Control, 68:208-215.
Mirhosseini, M. and Arjmand, V. 2014. Reducing Pathogens by Using Zinc Oxide Nanoparticles and Acetic Acid in Sheep Meat. Journal of food protection, 77:1599-1604.
Pappas, C., Tarantilis, P. A., Daliani, I., Mavromoustakos, T. and Polissiou, M. 2002. Comparison of Classical and Ultrasound-Assisted Isolation Procedures of Cellulose from Kenaf (Hibiscus Cannabinus L.) and Eucalyptus (Eucalyptus Rodustrus Sm.). Ultrasonics Sonochemistry, 9:19-23.
Pattanayaiying, R., H-Kittikun, A. and Cutter, C. N. 2015. Incorporation of Nisin Z and Lauric Arginate into Pullulan Films to Inhibit Foodborne Pathogens Associated with Fresh and Ready-to-Eat Muscle Foods. International Journal of Food Microbiology, 207:77-82.
Pirsa, S. 2021. Nanocomposite Base on Carboxymethylcellulose Hydrogel: Simultaneous Absorbent of Ethylene and Humidity to Increase the Shelf Life of Banana Fruit. International Journal of Biological Macromolecules, 193:300-310.
Pirsa, S. and Asadi, S. 2021. Innovative Smart and Biodegradable Packaging for Margarine Based on a Nano Composite Polylactic Acid/Lycopene Film. Food Additives & Contaminants: Part A, 38:856-869.
Pirsa, S. and Mohammadi, B. 2021. Conducting/Biodegradable Chitosan-Polyaniline Film; Antioxidant, Color, Solubility and Water Vapor Permeability Properties. Main Group Chemistry, 20:133-147.
Saini, S., Sillard, C., Belgacem, M. N. and Bras, J. 2016. Nisin Anchored Cellulose Nanofibers for Long Term Antimicrobial Active Food Packaging. RSC advances, 6:12422-12430.
Salmieri, S. et al. 2014. Antimicrobial Nanocomposite Films Made of Poly(Lactic Acid)-Cellulose Nanocrystals (Pla-Cnc) in Food Applications: Part a—Effect of Nisin Release on the Inactivation of Listeria Monocytogenes in Ham. Cellulose, 21:1837-1850.
Shabkhiz, M. A., Khalil Pirouzifard, M., Pirsa, S. and Mahdavinia, G. R. 2021. Alginate Hydrogel Beads Containing Thymus Daenensis Essential Oils/Glycyrrhizic Acid Loaded in Β-Cyclodextrin. Investigation of Structural, Antioxidant/Antimicrobial Properties and Release Assessment. Journal of Molecular Liquids, 344:117738.
Szymańska-Chargot, M., Chylińska, M., Pertile, G., Pieczywek, P. M., Cieślak, K. J., Zdunek, A. and Frąc, M. 2019. Influence of Chitosan Addition on the Mechanical and Antibacterial Properties of Carrot Cellulose Nanofibre Film. Cellulose, 26:9613-9629.
Yang, Y., Liu, H., Wu, M., Ma, J. and Lu, P. 2020. Bio-Based Antimicrobial Packaging from Sugarcane Bagasse Nanocellulose/Nisin Hybrid Films. International Journal of Biological Macromolecules, 161:627-635.