Genetic Variations and Bottleneck Demographic Studies in Kurdish Horse Breed Using 17 Microsatellite Markers

Document Type : Original Research

Authors
Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Islamic Republic of Iran.
Abstract
The Kurdish horse is one of the most valuable and original pure genetic reserves in Iran. According to historical evidence, this breed dates back to more than 2,500 years ago. In this population, genetic variations were analyzed using 17 microsatellite markers recommended by International Society for Animal Genetics (ISAG). Genomic DNAs were extracted from the hair roots of 761 Kurdish horses. DNA fragments were amplified by multiplex PCR reaction using fluorescently labeled primers, and determined by capillary electrophoresis. Average number of alleles per locus was 4.29 (from 6 alleles in HTG7 to 17 alleles in ASB17). The mean value of the observed heterozygosity was 0.721, ranging from 0.491 (HTG7) to 0.838 (VHL20), while expected heterozygosity ranged from 0.523 (HTG7) to 0.839 (VHL20) with a mean of 0.752. The PIC value was from 0.708 (HMS6) to 0.856 (ASB17) with a mean of 0.782. The inbreeding coefficient ranged from -0.012 (ASB2) to 0.183 (HTG6) with a mean of 0.040. Deviation from Hardy-Weinberg equilibrium (P< 0.05) was found in 11 loci. The total exclusion probability of the 17 microsatellite loci was 0.9999. Kurdish horse revealed bottleneck event under two models of microsatellite evolution for sign and standardized differences for Infinite Alleles Model (IAM) and Stepwise Mutation Model (SMM). Based on this study, the effectiveness of 17 microsatellite markers for parentage verification and assignment test of Kurdish horse is confirmed. These results may facilitate conservation programs for the studied breeds and raise preserve their genetic variation.

Keywords

Subjects


REFERENCES
Aberle, K.S., Distl,O. 2004. Domestication of the horse: results based on microsatellite and mitochondrial DNA markers. Arch. Anim. Breed.47: 517-535.
Amirinia, C., Seyedabadi, H.R., Banabazi, M.H., Kamali, M.A. 2007. Bottleneck Study and Genetic Structure of Iranian Caspian Horse Population Using Microsatellites. Pak J of Bio Sci.10:1540-1543.
Binns, M.M., Holmes, N.G., Holliman, A., Scott, A.M.1995. The identification of polymorphic microsatellites loci in the horse and their use in thoroughbred parentage testing. Br. Vet. J. 151(1), 9–15.
Botstein, D., White, R.L., Skolnick, M., Davis, R.W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet. 32: 314-331.
Budiansky, S., 2004.The Horse. Microsoft Òencartao Encyclopedia.
Coogle, L,. Reid, R., Bailey, E., Russ,M. 1996. Equine dinucleotide repeat polymorphisms at loci LEX002, -003, -004, -005, -006, -007, -008, -009, -010, -011, -012, -013 and -014. Anim. Genet. 27:126–127.
Cornuet, J. M., Luikart,G.1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144: 2001-2014.
Curi, R.A., Lopes, C.R. 2002. Evaluation of nine microsatellite loci and misidentification paternity frequency in a population of Gyr breed bovines. Braz. J Vet Res Anim Sci.39: 129-135.
Delgado, J.F., De, Andres, N., Valera, M., Gutierrez, J.P., Cervantes, I. 2014. Assessment of population structure depending on breeding objectives in Spanish Arabian horse by genealogical and molecular information. Livest Sci. 168: 9–16.
Dierks, C., Lohring, K., Lampe, V., Wittwer, C., Drogemuller, C., Distl, O. 2007. Genome-wide searchfor markers associated with osteochondrosi in Hanoverian warm blood horses. Mam Genome. 18: 739-747.
Dimsoski, P. 2003. Development of a 17-plex microsatellite polymerase chain reaction kit for genotyping horses. Croat Med J. 44: 332-335.
Ellegren, H., Johansson, M., Sandberg, K., Andersson, L.1992.Cloning of highly polymorphic microsatellites in the horse. Anim Genet. 23: 133-142.
Eggleston-Stott, M., DelValle, L.A., Bautista, M., Dileanis, D., Wictum, E., Bowling, AT. 1997. Nine equine dinucleotide repeats at microsatellite loci UCDEQ136, UCDEQ405, UCDEQ412, UCDEQ425, UCDEQ437, UCDEQ467, UCDEQ487, UCDEQ502 and UCDEQ505. Anim. Genet. 28: 370–371.
FAO. 1995. In: Beate D. Scherf (Ed.), World Watch List for Domestic Animal Diversity, second ed. FAO, Rome, Italy.
Emrani, h., Amirinia, C., Radjaee Arbabe,M.A. 2011. Genetic variation and bottleneck in Japanese quail (Coturnix japonica) strains using twelve microsatellite markers. African Journal of Biotechnology. 10(20): 4289-4295
Fotovati, A. 2000. Persion horse breeds from ancient time to present and their rules in development of world horse breeds. Asian-Australas. J.Anim.Sci. 13: 401–410.
Guérin, G., Bertaud, M., Amigues, Y. 1994. Characterization of seven new horse microsatellites: HMS1, HMS2, HMS3, HMS5, HMS6, HMS7 and HMS8. Anim. Genet. 25: 62.
Kalinowski, S.T., Taper, M.L., Marshall, T.C. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol.16:1099-1106.
Liu, G.Q., Jiang, X.P., Wang, J.Y., Wang, Z.Y., Liu, G.Y., Mao, Y.J. 2008. Analysis of Genetic Diversity of Yangzhou Chicken by Microsatellite Markers. International J. Poult. Sci. 7(12): 1237-1241.
Irvin, Z., Giffard, J,, Brandon, R., Breen, M.B.K., Bell, K. 1998.Equine dinucleotide repeat polymorphisms at loci ASB 21, 23, 25 and 37-43. Anim. Genet. 29: 67.
Mahrous, K.F., Hassanane, M., Abdel, Mordy, M., Shafey, H.I., Hassan, N. 2011. Genetic variations in horse using microsatellite markers. J Genet Eng Biotech. 9: 103-9.
Moridi, M., Masoudi, A., Vaez Torshizi, R., Hill, E. 2013. Mitochondrial DNA D-loop sequence variation in maternal lineages of Iranian native horses. Anim Genet. 44:209–213.
Ozkan, E., Soysal, M.I,, Ozder, M., Koban, E., Sahin, O., Togan, İ. 2009. Evaluation of parentage testing in the Turkish Holstein population based on 12 microsatellite loci. Livest. Sci. 124: 101–106.
Peakall, R., Smouse, P.E. 2006. GenALEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 6: 288–295.
Rahimi-Mianji, G., Nejati-Javaremi, A., Farhadi, A. 2015.Genetic diversity, parentage verification, and genetic bottlenecks evaluation in Iranian Turkmen horse. Russ J Genet. 51: 916–924.
Seyedabadia, H.R., Savar Sofla, S. 2017. Microsatellite Analysis for Parentage Verification and Genetic Characterization of the Turkmen Horse Population. Kafkas Univ Vet Fak Derg. 23: 467-471.
Seyedabadib, H.R., Savar Sofla, S., Kazemi, E. 2017.Genetic characterization and assessment of demographic bottleneck in Caspian horse population. Cell Mol Biol.63:92-96
Shahsavarani, H., Rahimi-mianji, G. 2010. Analysis of genetic diversity and estimation of inbreeding coefficient within Caspian horse population using microsatellite markers. Afr. J. Biotechnol. 9(3): 293-299.
Tozaki, T., Kakoi, H., Mashima, S., Hirota, K.I., Hasegawa, T., Ishida, N., Miura, N., Choi-Miura N.H., Tomita, M. 2011.Population study and validation of paternity testing for Thoroughbred horses by 15 microsatellite loci. J VetMed Sci. 63: 1191-1197.
Van Haeringen, H., Bowling, A.T., Stott, M.L., Lenstra, J.A., Zwaagstra, K.A. 1994. A highly polymorphic horse microsatellite locus: VHL20. Anim. Genet. 25: 207