Sustainable Cropping Pattern with the Tradeoff between Economic and Environmental Consideration in Shiraz Plain, Iran

Document Type : Original Research

Authors
1 Department of Agricultural Economics, Marvdasht Branch, Islamic Azad University, Marvdasht, Islamic Republic of Iran.
2 Department of Agricultural Economics, Extension and Education, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.
Abstract
One of the most important decisions that farmers make is the allocation of resources in an optimal manner, which is often done by determining the optimal cropping pattern. The purpose of this study was to present a cultivation model compatible with the agricultural ecosystem of Shiraz Plain, Fars Province, Iran, by quantifying the environmental effects of agricultural production using the Life Cycle Assessment (LCA) approach. The results of LCA showed that cultivation of crops such as lentils, onions, and tomatoes had the most negative environmental effects. The ecosystem quality index for crops in this plain varied between 0.03 and 3.64 PT. The highest negative impact of crop cultivation on the quality of the ecosystem was attributed to onion, tomato, and rain-fed lentils. The results of multi-objective planning showed that farmers can achieve their economic objectives and policymakers’ environmental goals through reducing the area under cultivation. By changing the cropping pattern towards the suggested pattern for Shiraz Plain, an average decrease of 5.60% in profit was expected. However, this change is an effective step in controlling consumption of water, chemical fertilizers, and pesticides. Achieving sustainable agriculture in terms of economic and environmental indicators is possible by reducing the cropland area and economic profit by 18.05% and 11.43%, respectively.

Keywords

Subjects


Acosta-Alba, I., Chia, E., & Andrieu, N. (2019). The LCA4CSA framework: Using life cycle assessment to strengthen environmental sustainability analysis of climate smart agriculture options at farm and crop system levels. Agri. Systems, 171, 155-170.
Asgharpour, M. J. (1998). Multiple Criteria Decision Making, Tehran University Press, Tehran, Vol. 1.
Cavalliere, C., Dell'Osso, G. R., Pierucci, A., & Iannone, F. (2018). Life cycle assessment data structure for building information modelling. J. Clean. Prod., 199, 193-204.
Chankong, V., & Haimes, Y. Y. (1983). North-Holland. New York.
Che, Z. H., & Chiang, C. J. (2010). A modified Pareto genetic algorithm for multi-objective build-to-order supply chain planning with product assembly. Adv. Eng. Softw., 41(7-8), 1011-1022.
Chen, Y., Zhou, Y., Fang, S., Li, M., Wang, Y., & Cao, K. (2022). Crop pattern optimization for the coordination between economy and environment considering hydrological uncertainty. Sci. Total Environ., 809, 151152.
De Schryver, A. M., Goedkoop, M. J., Leuven, R. S., & Huijbregts, M. A. (2010). Uncertainties in the application of the species area relationship for characterisation factors of land occupation in life cycle assessment. Int. J. LCA., 15, 682-691.
Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T., & Eicker, A. (2014). Global‐scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites. J. Water Resour. Res., 50(7), 5698-5720.
Ehrgott, M. Multicriteria Optimization. second edn. Springer, Berlin, 2005.
Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., ... & Suh, S. (2009). Recent developments in life cycle assessment. J. Environ. Manage., 91(1), 1-21.
Gleeson, T., Wada, Y., Bierkens, M. F., & Van Beek, L. P. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197-200.
Gohari, A., Mirchi, A., & Madani, K. (2017). System dynamics evaluation of climate change adaptation strategies for water resources management in central Iran. J. Water Resour. Manag., 31, 1413-1434.
Gomiero, T., Pimentel, D., & Paoletti, M. G. (2011). Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Critical reviews in plant sciences, 30(1-2), 95-124.
Grados, D., & Schrevens, E. (2019). Multidimensional analysis of environmental impacts from potato agricultural production in the Peruvian Central Andes. Sci. Total Environ., 663, 927-934.
Haimes, Y. (1971). On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE transactions on systems, man, and cybernetics, (3), 296-297.
Harwood, R. R. (2020). A history of sustainable agriculture. In Sustainable agricultural systems (pp. 3-19). CRC Press.
Hwang, C. L., & Masud, A. S. M. (2012). Multiple objective decision making—methods and applications: a state-of-the-art survey (Vol. 164). Springer Science & Business Media.
Kaab, A., Sharifi, M., Mobli, H., Nabavi-Pelesaraei, A., & Chau, K. W. (2019). Use of optimization techniques for energy use efficiency and environmental life cycle assessment modification in sugarcane production. J. Energy., 181, 1298-1320.
Khoshnevisan, B., Bolandnazar, E., Shamshirband, S., Shariati, H. M., Anuar, N. B., & Kiah, M. L. M. (2015). Decreasing environmental impacts of cropping systems using life cycle assessment (LCA) and multi-objective genetic algorithm. J. Clean. Prod., 86, 67-77.
Layani, G. H., Darzi-Naftchali, A., Motevali, A., Bagherian-Jelodar, M., Keikha, M., Nade, M., ... & Pirdashti, H. (2023). Developing environmentally friendly cropping pattern with a multi-objective planning approach in Sari County. J. Agric. Econ., 15(1), 79-96.
Layani, G., Bakhshoodeh, M., Zibaei, M., & Viaggi, D. (2021). Sustainable water resources management under population growth and agricultural development in the Kheirabad river basin, Iran. BAE., 10(4), 305-323.
Madani, K. (2014). Water management in Iran: what is causing the looming crisis?. J. Environ. Sci., 4, 315-328.
Marzban, Z., Asgharipour, M. R., Ghanbari, A., Ramroudi, M., & Seyedabadi, E. (2021). Determining cropping patterns with emphasis on optimal energy consumption using LCA and multi-objective planning: a case study in eastern Lorestan Province, Iran. Energy Ecol. Environ., 1-19.
Miettinen, K. (1999). Nonlinear multiobjective optimization (Vol. 12). Springer Science & Business Media.
Mirzaei, A., Abdeshahi, A., Azarm, H., & Naghavi, S. (2022). New design of water-energy-food-environment nexus for sustainable agricultural management. Stoch. Environ. Res. Risk Assess., 36(7), 1861-1874.
Mirzaei, A., Azarm, H., & Layani, G. (2019). Prioritize the factors affecting the sustainability of Shadegan Wetland Ecosystem Stability Index. J. Wetland Eco. biology, 10(4), 69-80.
Mostashari-Rad, F., Ghasemi-Mobtaker, H., Taki, M., Ghahderijani, M., Kaab, A., Chau, K. W., & Nabavi-Pelesaraei, A. (2021). Exergoenvironmental damages assessment of horticultural crops using ReCiPe2016 and cumulative exergy demand frameworks. J. Clean. Prod., 278, 123788
Nabavi-Pelesaraei, A., Bayat, R., Hosseinzadeh-Bandbafha, H., Afrasyabi, H., & Chau, K. W. (2017). Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management-A case study in Tehran Metropolis of Iran. J. Clean. Prod., 148, 427-440.
Najafabadi, M. M., Ziaee, S., Nikouei, A., & Borazjani, M. A. (2019). Mathematical programming model (MMP) for optimization of regional cropping patterns decisions: A case study. Agric. Syst., 173, 218-232.
Nikouei, A., Asgharipour, M. R., & Marzban, Z. (2022). Modeling land allocation to produce crops under economic and environmental goals in Iran: a multi-objective programming approach. Ecol Modell., 471, 110062.
Pasandideh, S. H. R., Niaki, S. T. A., & Asadi, K. (2015). Optimizing a bi-objective multi-product multi-period three echelon supply chain network with warehouse reliability. Expert Syst. Appl., 42(5), 2615-2623.
Pedro-Monzonís, M., del Longo, M., Solera, A., Pecora, S., & Andreu, J. (2016). Water accounting in the Po River Basin applied to climate change scenarios. Procedia Eng., 162, 246-253.
Radmehr, R., Ghorbani, M., & Ziaei, A. N. (2021). Quantifying and managing the water-energy-food nexus in dry regions food insecurity: New methods and evidence. Agric. Water Manag., 245, 106588.
Sharma, D. K., Ghosh, D., & Mattison, D. M. (2003). An application of goal programming with penalty functions to transshipment problems. Int. J. Logist. Res. Appl., 6(3), 125-136.
Taherzadeh-Shalmaei, N., Sharifi, M., Ghasemi-Mobtaker, H., & Kaab, A. (2021). Evaluating the energy use, economic and environmental sustainability for smoked fish production from life cycle assessment point of view (case study: Guilan Province, Iran). Environ. Sci. Pollut. Res., 28(38), 53833-53846.
Tricase, C., Lamonaca, E., Ingrao, C., Bacenetti, J., & Giudice, A. L. (2018). A comparative Life Cycle Assessment between organic and conventional barley cultivation for sustainable agriculture pathways. J. Clean. Prod., 172, 3747-3759.
Wowra, K., Zeller, V., & Schebek, L. (2020). Nitrogen in Life Cycle Assessment (LCA) of agricultural crop production systems: Comparative analysis of regionalization approaches. Sci. Total Environ., 143009.