Herbicidal and Insecticidal Activity of Secondary Metabolites from Endophytic and Soil Fungi

Document Type : Original Research

Authors
1 Department of Pesticide Chemistry and Technology, Faculty of Agriculture, El-Shatby, Alexandria University, Alexandria 21545, Egypt.
2 Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, 997-8555, Japan.
3 Department of Tropical Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt.
Abstract
Fungi are a good source for lead molecules in drug discovery and development. However, many compounds derived from fungi were not evaluated for their bioactivity against economic, agricultural, and public health pests. Twelve fungal secondary metabolites (1-12) were evaluated for herbicidal activity against Silybum marianum and insecticidal activity against Culex pipiens larvae. Among the tested metabolites, brefeldin A (6) and 6-eopxy-4-hydroxy-3-methoxy-5-methyl-cyclohex-2-en-1-one (11) showed potent herbicidal activity against S. marianum with complete inhibition of seed germination at 500 mg L−1. Compound 6 revealed an exceptional herbicidal activity as it caused complete inhibition of root growth and strong reduction in shoot growth (I = 74.5%) and germination (10.0%) at 25 mg L−1. In addition, dehydroaustin (9), phomaxanthone A (4) and deacetylphomaxanthone A (5) displayed a potent toxicity against fourth larval instar of C. pipiens with LC50 values of 3.27, 57.03 and 63.50 mg L−1, respectively. Based on the results of this study, compounds 4-6, 9 and 11 should be developed as natural pesticides.

Keywords


REFERENCES
1. Abdelgaleil, S. A. M., Abdel-Razeek, N. and Soliman, S. A. 2009. Herbicidal activity of three sesquiterpene lactones on wild oat (Avena fatua) and their possible mode of action. Weed Sci., 57: 6-9.
2. Abdelgaleil, S. A. M. and Hashinaga, F. 2007. Allelopathic potential of two sesquiterpene lactones from Magnolia grandiflora L. Biochem. Syst. Ecol., 35: 737-742.
3. Abdelgaleil, S. A. M., Zoghroban, A. A. M., El-Bakry, A. M. and Kassem, S. M. I., 2019. Insecticidal and antifungal activities of crude extracts and isolated compounds from rhizomes of Curcuma longa (Zingiberaceae). J. Agric. Sci. Technol., 21: 1049-1061.
4. Aktar, W. and Sengupta, D. and Chowdhury, A. 2009. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol., 2: 1–12.
5. Alarif, W. M., Abou-Elnaga, Z. S., Ayyad, S.–E. N. and Al-lihaibi, S, S. 2010. Insecticidal metabolites from the green alga Caulerpa racemosa. Clean: Soil, Air, Water, 38: 548–557.
6. Betina, V. 1992. Biological effects of the antibiotic brefeldin A (decumbin, cyanein, ascotoxin, synergisidin): a retrospective. Folia Microbiol., 37: 3-11.
7. Berestetskiy, A., Hu, Q. 2021. The Chemical Ecology Approach to Reveal Fungal Metabolites for Arthropod Pest Management. Microorganisms, 9: 1379.
8. Butler, M. S., Robertson, A. A. and Cooper, M. A. 2014. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep., 31: 1612–1661.
9. Elsaesser, B., Krohn, K., Floerke, U., Root, N., Aust, H. J., Draeger, S., Schulz, B., Antus, S. and Kurtán, T. 2005. X-ray structure determination absolute configuration and biological activity of phomoxanthone. Eur. J. Org. Chem., 21: 4563–4570.
10. Finney, D. J. 1971. Probit Analysis, 3rd ed. Cambridge University Press, London, p. 318.
11. Geris, R., Rodrigues-Fo, E., da Silva, H. H. G. and da Silva, I. G. I. G. 2008. Larvicidal effects of fungal meroterpenoids in the control of Aedes aegypti L., the main vector of dengue and yellow fever. Chem. Biodivers., 5: 341-345.
12. Gerwick, B. C. and Sparks, T, C. 2014. Natural products for pest control: An analysis of their role, value and future. Pest Manag. Sci., 70: 1169–1185.
13. Gouda, N. A. A., Saad, M. M. G. and Abdelgaleil, S. A. M. 2016. Pre and Post Herbicidal activity of monoterpenes against barnyard grass (Echinochloa crus-galli). Weed Sci., 64: 191-200.
14. Hayasaka, S., Koseki, T., Murayama, T., Kwon, E. and Shiono, Y. 2011. Phenylisobenzofuranones from Fungicolous nodulisporium sp. SH-1. Z. Naturforsch., 66b: 961– 964.
15. Holm, L. G., Doll, J., Holm, E., Pancho, J. and Herberger, J. 1997. World Weeds. Natural Histories and Distribution. Wiley, NewYork.
16. Hutchinson, C. R., Shu-Wee, L., Mcinnes, A. G. and Walter, J. A. 1983. Comparative biochemistry of fatty acid and macrolide antibiotic (Brefeldin A) formation in Penicilluim brefeldianum. Tetrahedron, 39: 3507-3513.
17. Ikeda, M., Niwa, G.-I., Tohyama, K., Sassa, T. and Miura, Y. 1977. Structures of fasciculol C and its depsipeptides, new biologically active substances from Neamatoloma fasciculare. Agric. Biol. Chem., 41: 1803-1805.
18. Keller, S. 1998. Use of Fungi for Pest Control in Sustainable Agriculture. Phytoprotection, 79: 56-60.
19. Kim, K. H., Moon, E., Choi, S. U., Kim, S. Y. and Lee, K. R. 2013. Lanostane triterpenoids from the mushroom Naematoloma fasciculare. J. Nat. Prod., 76: 845−851.
20. Leather, G. R. and Einhellig, A. 1985. Mechanisms of allelopathic action in bioassay, pp 197–205, In the Chemistry of Allelopathy. Washington, DC: American Chemical Society.
21. Lucas, E. M. F., de Castro, M. C. M. and Takahashi, J. A. 2007. Antimicrobial properties of sclerotiorin, isocromophilone VI and pencolide, metabolites from Brazillian cerrado isolate of Penicillium sclerotiorum van beyma. Braz. J. Microbiol., 38: 785-789.
22. Masters, K. S. and Bräse, S. 2002. Xanthones from fungi, lichens, and bacteria: the natural products and their synthesis. Chem. Rev., 112: 3717–3776.
23. Meegan, J. M., Khalil, G. M., Hoogstraal, H. and Adham, F. K. 1980. Experimental transmission and field isolation studies implicating Culex pipiens as a vector of Rift Valley fever virus in Egypt. Am. J. Trop. Med. Hyg., 29: 1405–1410.
24. Porras-Alfaro, A. and Bayman, P. 2011. Hidden fungi, emergent properties: endophytes and microbiomes. Annu. Rev. Phytopathol., 49: 291-315.
25. Radwan, M. A., El-Zemity, S. R., Mohamed, S. A. and Sherby, S. M. 2008. Larvicidal activity of some essential oils, monoterpenoids and their corresponding N-methyl carbamate derivatives against Culex pipiens (Diptera: Culicidae). Int. J. Trop. Insect Sci., 28: 61–68.
26. Ronsberg, D., Debbab, A., Mandi, A., Vasylyeva, V., Bohler, P., Stork, B., Engelke, L., Hamacher, A., Sawadogo, R., Diederich, M., Wray, V., Lin, W., Kassack, M. U., Janiak, C., Scheu, S., Wesselborg, S., Kurtan, T., Aly, A. H. and Proksch, P. 2013. Pro-apoptotic and immunostimulatory tetrahydroxanthone dimers from the endophytic fungus Phomopsis longicolla. J. Org. Chem. 78: 12409–12425.
27. Saad, M. M. G., Abdelgaleil, S. A. M. and Shiono, Y. 2021. Antibacterial and herbicidal properties of secondary metabolites from fungi. Nat. Prod. Res. 35: 5446–5451.
28. Saad, M. M. G., Abdelgaleil, S. A. M. and Suganuma, T. 2012. Herbicidal potential of pseudoguaninolide sesquiterpenes on wild oat, Avena fatua L. Biochem. Syst. Ecol., 44: 333-337.
29. Sagnou, M., Mitsopoulou, K. P., Koliopoulos, G., Pelecanou, M., Couladouros, E. A. and Michaelakis, A. 2012. Evaluation of naturally occurring curcuminoids and related compounds against mosquito larvae. Acta Trop., 123: 190–195.
30. Schrader, K. K., Andolfi, A., Cantrell, C. L., Cimmino, A., Duke, S. O., Osbrink, W., Wedge, D. E. and Evidente, A. 2010. A Survey of phytotoxic microbial and plant metabolites as potential natural products for pest management. Chem. Biodivers., 7: 2261-2280.
31. Schürmann, B. T. M., Sallum, W. S. T. and Takahashi, J. A. 2010. Austin, dehydroaustin and other metabolites from Penicillium brasilianum. Quím Nova., 33: 1044–1046.
32. Segaran, G. and Sathiavelu, M. 2019. Fungal endophytes: A potent biocontrol agent and a bioactive metabolite reservoir. Biocatal. Agric. Biotechnol., 21: 101284.
33. Sethi S, Kumar R, Gupta S. 2013. Antibiotic production by microbes isolated from soil. Int. J. Pharm. Sci. Res., 4: 2967.
34. Sharma, D., Pramanik, A. and Agrawal, P. K. 2016. Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D.Don. 3 Biotech, 6: 210.
35. Shiono, Y., Kikuchi, M., Koseki, T., Murayama, T., Kwon, E., Aburai, N., Kimura, K.-I. 2011. Isopimarane diterpene glycosides, isolated from endophytic fungus Paraconiothyrium sp. MY-42. Phytochemistry, 72: 1400-1405.
36. Shiono, Y. and Murayama, T. 2005. New eremophilane-type sesquiterpenoids, eremoxylarins A and B from Xylariaceous endophytic fungus YUA-026. Z. Naturforsch., 60b: 885–890.
37. Shiono, Y., Murayama, T., Takahashi, K., Okada, K., Katohda, S. and Ikeda, M. 2005. Three oxygenated cyclohexanone derivatives produced by an endophytic fungus. Biosci. Biotechnol. Biochem., 69: 287–292.
38. Shiono, Y. 2006. Anthracobic acids A and B, two polyketides, produced by an endophytic fungus Anthracobia sp. Chem. Biodivers., 3: 217-223.
39. Silvie, P. J., Martin, P., Huchard, M., Keip, P., Gutierrez, A. and Sarter, S. 2021. Prototyping a knowledge-based system to identify botanical extracts for plant health in Sub-Saharan Africa. Plants, 10: 896.
40. Singh, J. and Yadav, A. N. 2020. Natural bioactive products in sustainable agriculture. Springer, Singapore.
41. Tanaka, Y. and Omura, S. 1993. Agroactive compounds of microbial origin. Annu. Rev. Microbiol., 47: 57-87.
42. Turk, M. A., Abdel-Rahman and Tawaha, M. 2002. Inhibitory effects of aqueous extracts of black mustard on germination and growth of lentil. Pak. J. Agron. 1: 28–30.
43. Wang, W., Zhu, T., Tao, H., Lu, Z., Fang, Y., Gu, Q. and Zhu, W. 2007. Two new cytotoxic quinone type compounds from the Halotolerant fungus Aspergillus variecolor. J. Antibiot., 60: 603–607.
44. Wasser, S. P. 2002. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol., 60: 258–274.
45. WHO1996. Report of the WHO informal consultation on the evaluation on the testing of insecticides CTD/WHO PES/IC/96.1, p 69.
46. Wicklow, D. T. and Poling, S. M. 2009. Antimicrobial activity of pyrrocidines from Acremonium zeae against endophytes and pathogens of maize. Phytopathol., 99: 109-115.
47. Zahran, H. A. and Abdelgaleil, S. A. M. 2011. Insecticidal and developmental inhibitory properties of monoterpenes on Culex pipiens L. (Diptera: Culicidae) J. Asia-Pac. Entomol., 14: 46–51.
48. Zahran, H. E. D., Abou-Taleb, H. K. and Abdelgaleil, S. A. M. 2017. Adulticidal, larvicidal and biochemical properties of essential oils against Culex pipiens L. J. Asia-Pac. Entomol., 20: 133–139.