Ali MA, Shahzadi M, Zahoor A, Dababat AA, Toktay H, Bakhsh A, Nawaz MA and Li H. 2019. Resistance to cereal cyst nematodes in wheat and barley: an emphasis on classical and modern approaches. Int. J. Mol. Sci, 20(2): 432.
Asiedu R, Fisher JM and Driscoll CJ. 1990. Resistance to Heterodera avenae in the rye genome of triticale. Theor. Appl. Genet, 79: 331-336.
Avni R, Nave M, Eilam T, Sela H, Alekperov C, Peleg Z, Dvorak J, Korol A and Distelfeld A. 2014. Ultra-dense genetic map of durum wheat×wild emmer wheat developed using the 90K iSelect SNP genotyping assay. Mol. Breed, 34: 1549-1562.
Dababat AA, Ferney G, Erginbas-Orakci G, Dreisigacker S, Imren M, Toktay H, Elekcioglu H, Mekete T, Nicol J, Ansari O and Ogbonnaya F. 2016. Association analysis of resistance to cereal cyst nematodes (Heterodera avenae) & root lesion nematodes (Pratylenchus neglectus & P. thornei) in CIMMYT advanced spring wheat lines for semi-arid conditions. Breed. Sci, 66: 692-702.
Dababat A, Rehman-Arif MA, Toktay H, Atiya O, Shokat S, E-Orakci G, Imren M, Singh S. 2021. A GWAS to identify the cereal cyst nematode (Heterodera filipjevi) resistance loci in diverse wheat prebreeding lines. J. Appl. Genet, 62: 93-98.
Delibes A, Romero D, Aguaded S, Duce A, Mena M, Lopez-Brana I, Andres MF, Martin-Sanchez JA and Garcia-Olmedo F. 1993. Resistance to cereal cyst nematode (Heterodera avenae Woll.) transferred from the wild grass Aegilops ventricosa to hexaploid wheat by a stepping-stone procedure. Theor. Appl. Genet, 87: 402-408.
Dhingani RM, Umrania VV, Tomar RS, Parakhia MV and Golakiya B. 2015. Introduction to QTL mapping in plants. Ann. Plant Sci, 4: 1072-1079.
Eastwood R, Lagudah E, Appels R, Hannah M, Kollmorgen J. 1991. Triticum tauschii: a novel source of resistance to cereal cyst nematode (Heterodera avenae). Aust. J. Agric. Res, 42: 69–77.
Erginbas-Orakci G, Sehgal D, Sohail Q, Ogbonnaya F, Dreisigacker S, Pariyar SR and Dababat AA. 2018. Identification of novel quantitative trait loci linked to crown rot resistance in spring wheat. Int. J. Mol. Sci, 19: 2666.
Evanno G, Regnaut S and Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol, 14: 2611-2620.
Gahlaut V, Jaiswal V, Singh S, Balyan HS and Gupta PK. 2019. Multi-locus genome wide association mapping for yield and its contributing traits in hexaploid wheat under different water regimes. Sci. Rep, 9: 19486.
Handoo ZA and Subbotin SA. 2018. Taxonomy, identification and principal species. In Perry RN, Moens M and Jones JT (eds) Cyst nematodes. CAB International, Wallingford, p. 365-397.
Jahier J, Tanguy AM, Abelard P and Rivoal R. 1996. Utilisation of deletions to localise a gene for resistance to the cereal cyst nematode, Heterodera avenae, on an Aegilops ventricosa chromosome. Plant Breed, 115: 282-284.
Karimipour Fard H, Pourjam E, Tanha Maafi Z, Safaie N. 2018. Assessment of yield loss of wheat cultivars caused by Heterodera filipjevi under field conditions. J. Phytopathol, 166: 299-304.
Kishii, M. 2019. An update of recent use of Aegilops species in wheat breeding. Front. Plant Sci, 10: 585.
Kumar D, Sharma S, Sharma R, Pundir S, Singh VK, Chaturvedi D, Singh B, Kumar S and Sharma S. 2021. Genome-wide association study in hexaploid wheat identifies novel genomic regions associated with resistance to root lesion nematode (Pratylenchus thornei). Sci. Rep, 11: 3572.
Lai K, Lorenc MT, Lee HC, Berkman PJ, Bayer PE, Visendi P, Ruperao P, Fitzgerald TL, Zander M, Chan CH, Manoli S, Stiller J, Batley J and Edwards D. 2015. Identification and characterization of more than 4 million intervarietal SNPs across the group 7 chromosomes of bread wheat. Plant Biotechnol. J, 13(1):97–104.
Majd Taheri Z, Maafi ZT, Nazari K, Nezhad KZ, Rakhshandehroo F and Dababat AA. 2019. Combined study on genetic diversity of wheat genotypes using SNP marker and phenotypic reaction to Heterodera filipjevi. Genet. Resour. Crop Evol, 66: 1791-1811.
Ogbonnaya FC, Seah S, Delibes A, Jahier J, Lopez-Brana I, Eastwood RF and Lagudah ES. 2001. Molecular-genetic characterisation of a new nematode resistance gene in wheat. Theor. Appl. Genet, 102: 623-629.
Pariyar SR, Dababat AA, Sannemann W, Erginbas-Orakci G, Elashry A, Siddique S, Morgounov A, Leon J and Grundler FM. 2016. Genome wide association study in wheat identifies resistance to the cereal cyst nematode Heterodera filipjevi. Phytopathol, 106: 1128-1138.
Paull JG, Chalmers KJ, Karakousis A, Kretschmer JM, Manning S and Langridge P. 1998. Genetic diversity in Australian wheat varieties and breeding material based on RFLP data. Theor. Appl. Genet, 97: 435-446.
Pritchard JK, Stephens M and Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945-959.
Rabieyan E, Bihamta MR, Esmaeilzadeh Moghaddam M, Mohammadi V and Alipour H. 2022. Genome-wide association mapping and genomic prediction for pre-harvest sprouting resistance, low α-amylase and seed color in Iranian bread wheat. BMC Plant Biol, 22: 300.
Saghai-Maroof MA, Soliman K, Jorgensen RA and Allard RW. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, & population dynamics. Proc. Natl. Acad. Sci, 81: 8014-8018
Sansaloni C, Petroli C, Jaccoud D, Carling J, Detering F, Grattapaglia D and Kilian A. 2011. Diversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proc, 5: 54.
Sharma P, Saini M, Gupta OP, Gupta N, Singh AK, Selvakumar R, Tiwari V and Sharma I. 2013. Tracking of cereal cyst nematode resistance genes in wheat using diagnostic markers. J. wheat res, 5: 35-40.
Slootmaker LAJ, Lange W, Jochemsen G and Schepers J. 1974. Monosomic analysis in bread wheat of resistance to cereal root eelworm. Euphytica, 23: 497-503.
Smiley RW, Dababat AA, Iqbal S, Jones MGK, Tanha Maafi Z, Peng D, Subbotin SA and Waeyenberge L. 2017. Cereal cyst nematodes: a complex and destructive group of Heterodera species. Plant Dis, 101: 1692-1720.
Sohail Q, Erginbas-Orakci G, Ozdemir F, Jighly A, Dreisigacker S, Bektas H, Birisik N, Ozkan H and Dababat AA. 2022. Genome-Wide Association Study of Root-Lesion Nematodes Pratylenchus Species and Crown Rot Fusarium culmorum in Bread Wheat. Life, 12(3): 372.
Tehseen MM, Tonk FA, Tosun M, Istipliler D, Amri A, Sansaloni CP, Kurtulus E, Mubarik MS and Nazari K. 2022. Exploring the Genetic Diversity and Population Structure of Wheat Landrace Population Conserved at ICARDA Genebank. Front. Genet, 13: 900572.
Toumi F, Waeyenberge L, Viaene N, Dababat AA, Nicol J, Ogbonnaya F and Moens M. 2018. Cereal cyst nematodes: Importance, distribution, identification, quantification, and control. Eur. J. Plant Pathol, 150:1-20.
Wang SX, Zhu YL, Zhang DX, Shao H, Liu P, Hu JB, Zhang H, Zhang HP, Chang CH, Lu J, Xia XH, Sun GL and Ma CX. 2017. Genome wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. Plos One, 12 (11): e0188662.
Wen W, He Z, Gao F, Liu J, Jin H, Zhai S, Qu Y and Xia X. 2017. A high-density consensus map of common wheat integrating four mapping populations scanned by the 90K SNP Array. Front. Plant Sci, 8: 1389.
Williams KJ, Lewis JG, Bogacki P, Pallotta MA, Willsmore KL, Kuchel H and Wallwork H .2003. Mapping of a QTL contributing to cereal cyst nematode tolerance & resistance in wheat. Aust. J. Agric. Res, 54: 731-737.