Agroecological Intensification of Potato (Solanum tuberosum L.) Cultivation for Sustainable and Increased Productivity in Torbat-e Heydariyeh Region, Iran

Document Type : Original Research

Authors
Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, P. O. Box: 91775-1163, Mashhad, Islamic Republic of Iran.
Abstract
The first step to achieving ecological sustainability and intensification in agricultural systems is to have a comprehensive agroecological analysis of agricultural systems. This research analyzed the agroecological ecosystem of potato cultivation in the Torbat-e Heydariyeh Region of Iran over fifteen years (2001-2016). Based on the results, potato yield increased by 0.28 t ha-1 yr-1. The average potential yield of potato was calculated by the FAO method to be 64 t.ha-1. Also, the potential yield did not increase significantly during the study period. The average yield gap of potato was calculated to be 32.44 t ha-1. Also, with increasing yield, the yield gap showed a decreasing trend. The ecosystems experienced a steady rise in intensification, and the stability decreased. It was observed that although nitrogen fertilizer application was increased, its efficiency dropped from 110 kg tuber per kg of nitrogen fertilizer to 70 kg. Due to the decreasing trend of NUpE (Nitrogen uptake efficiency) and NUE (Nitrogen use efficiency) during the studied years, the NUE gap was the main factor in increasing nitrogen consumption, increasing intensification, and reducing stability in the studied systems. Therefore, changing the management method to increase the efficiency of nitrogen consumption can be suggested as the first step for moving towards ecological intensification and improving the sustainability of potato production systems.

Keywords

Subjects


1. Abdalla, M., Hastings, A., Cheng, K., Yue, Q., Chadwick, D., Espenberg, M., Truu, J., Rees, R.M. and Smith, P. 2019. A Critical Review of The Impacts of Cover Crops on Nitrogen Leaching, Net Greenhouse Gas Balance, and Crop Productivity. Glob. Chang Biol. 25(8): 2530-2543.
2. Ahmed, M., Rauf, M., Mukhtar, Z. and Saeed, N. A. 2017. Excessive Use of Nitrogenous Fertilizers: An Unawareness Causing Serious Threats to The Environment and Human Health. ESPR, 24: 26983-26987. https://doi.org/10.1007/s11356-017-0589-7
3. Akbari, H., Soleimani, H., Radfard, M., Abasnia, A., Hashemzadeh, B., Akbari, H., and Adibzadeh, A. 2018. Data on Investigating the Nitrate Concentration Levels and Quality of Bottled Water in Torbat-E Heydarieh, Khorasan Razavi Province, Iran. Data, in Brief, 20: 463-467.
4. Alasti, O., Zeinali, E., Soltani, A. and Torabi, B., 2020. Estimation of Yield Gap and the Potential of Rainfed Barley Production Increase in Iran. J. Crop Prod, 13(3):41-60. https://doi.org/10.22069/EJCP.2021.16896.2250.
5. Alijani, K., Bahrani, M. J., and Kazemeini, S. A. 2019. Is it Necessary to Adjust Nitrogen Recommendations for Tillage and Wheat Residue Management in Irrigated Sweet Corn? Arch. Agron. Soil Sci. 65(14): 1984-1997.
6. Alekseychik, T. V., Bogachev, T. V., Karasev, D. N., Sakharova, L. V. and Stryukov, M. B., 2019. Fuzzy Method of Assessing the Intensity of Agricultural Production on a Set of Criteria of the Level of Intensification and the Level of Economic Efficiency of Intensification. In 13th International Conference on Theory and Application of Fuzzy Systems and Soft Computing—ICAFS-2018 13 (pp. 635-642). Springer International Publishing. https://doi.org/10.1007/978-3-030-04164-9_83
7. Alexandridis, N., Feit, B., Kihara, J., Luttermoser, T., May, W., Midega, C., Öborn, I., Poveda, K., Sileshi, G.W., Zewdie, B. and Clough, Y., 2023. Climate Change and Ecological Intensification of Agriculture in Sub-Saharan Africa–A Systems Approach to Predict Maize Yield under Push-Pull Technology. Agric Ecosyst Environ. 352:108511. https://doi.org/10.1016/j.agee.2023.108511
8. Aseel, D. G., Mostafa, Y., Riad, S. A. and Hafez, E. E. 2019. Improvement of Nitrogen Use Efficiency in Maize Using Molecular and Physiological Approaches. Symbiosis, 78 (3): 263–274.
9. Ashu, A., and Lee, S. 2019. Reuse of Agriculture Drainage Water in a Mixed Land-Use Watershed. J. Agron., 9 (1): 1-18.
10. Bargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y. and Dhiba, D. 2018. Soil Microbial Resources For Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System. Front Microbiol, 9: 1606.
11. Blösch, S., Albrecht, M., Jenny, M., Streit, B. and Knop, E. 2023. Rows Make the Field: Winter Wheat Fields with Manipulated Crop Architecture Show Potential for Ecological Intensification Based on Higher Natural Pest and Weed Seed Control. Agric Ecosyst Environ. 348:108404. https://doi.org/10.1016/j.agee.2023.108404
12. Calderini, D. F., and Slafer, G. A. 1999. Has Yield Stability Changed With The Genetic Improvement of Wheat Yield? Euphytica, 107(1): 51-59. https://doi.org/10.1023/A:1003579715714
13. Calderini, D. F. and Slafer, G. A. 1998. Changes in Yield and Yield Stability in Wheat during the 20th century. Field Crop Res., 57(3): 335-347. https://doi.org/10.1016/S0378-4290(98)00080-X
14. Cassman, K. G. 2001. Crop Science Research to Assure Food Security, In J. Nosberger, H.H. Geiger, P.C. Struik (Eds), Crop Science: Progress and Prospects. CAB International Wallingford, pp. 33-51.
15. Chen, S., Liu, S., Zheng, X., Yin, M., Chu, G., Xu, C., Yan, J., Chen, L., Wang, D. and Zhang, X. 2018a. Effect of Various Crop Rotations on Rice Yield and Nitrogen Use Efficiency in Paddy–Upland Systems in Southeastern China. Crop J., 6(6): 576-588.
16. Chen, H., Deng, A., Zhang, W., Li, W., Qiao, Y., Yang, T., Zheng, C., Cao, C., and Chen, F. 2018b. Long-Term Inorganic plus Organic Fertilization Increases Yield and Yield Stability of Winter Wheat. Crop J., 6(6): 589-599. https://doi.org/10.1016/j.cj.2018.06.002.
17. Commission European. 2017. Agri-Environmental Indicator- Intensification- Extensification. Belgium, EU Rural Review. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri environmental_indicator_-_intensification_-_extensification&oldid=350689
18. Cusumano, A., Harvey, J. A., Bourne, M. E., Poelman, E. H. and G de Boer, J. 2020. Exploiting Chemical Ecology to Manage Hyper Parasitoids in Biological Control of Arthropod Pests. Pest Manag. Sci., 76(2): 432-443.
19. Deb, D., 2020. Is the System of Rice Intensification (SRI) Consonant with Agroecology? Agroecol. Sustain. Food Syst, 44 (10):1338-1369. https://doi.org/10.1080/21683565.2020.1779165
20. Dadrasi, A., Torabi, B., Rahimi, A., Soltani, A. and Zeinali, E., 2020. Determination of Potato (Solanum tuberosum L.) Yield Gap in Golestan Province. J. Agroecol, 12(4):613-633.
21. Dehkordi, P. A., Nehbandani, A., Hassanpour-Bourkheili, S., Kamkar, B. 2020 Yield Gap Analysis Using Remote Sensing and Modeling Approaches: Wheat in the Northwest of Iran. Int. J. Plant Prod. 14(3): 443-452. https://doi.org/10.1007/s42106-020-00095-4
22. Deng, N., Grassini, P., Yang, H., Huang, J., Cassman, K. G. and Peng, S. 2019. Closing Yield Gaps for Rice Self-Sufficiency in China. Nature Communications, 10(1): 1725.
23. Dimkpa, C. O., Fugice, J., Singh, U. and Lewis, T. D. 2020. Development of Fertilizers for Enhanced Nitrogen Use Efficiency–Trends and Perspectives. Sci. Total Environ.731: 139113. https://doi.org/10.1016/j.scitotenv.2020.139113
24. FAO. 1978. Report on The Agroecological Zones Project. Vol. 1. Methodology and Results for Africa. World Soil Resources Report 48/1. FAO, Rome. Pp: 158.
25. FAO. 1981. Report on The Agroecological Zones Project. Methodology and Results for South and Central America. World Soil Resources Report 48/3. FAO, Rome. 3. pp: 251.
26. FAO. 2009. Organic Agriculture: Glossary on Organic Agriculture. Food and Agriculture Organization of the United Nations Rome. Pp: 163. http://www.fao.org/3/k4987t/k4987t00.htm
27. FAO. 2019. The FAOSTAT Database. Available at http://faostat.fao.org/default.aspx.
28. Folberth C., Khabarov N., Balkovič J., Skalský R., Visconti P., Ciais P., Janssens I. A., Peñuelas J., and Obersteiner M. 2020 The Global Cropland-Sparing Potential of High-Yield Farming. Nat. Sustain. 3(4): 281-289. https://doi.org/10.1038/s41893-020-0505-x
29. Frøslev, T. G., Nielsen, I. B., Santos, S. S., Barnes, C. J., Bruun, H. H. and Ejrnæs, R. 2022. The Biodiversity Effect of Reduced Tillage on Soil Microbiota. Ambio, 51(4): 1022-1033.
30. Gaitán-Cremaschi D., Klerkx L., Duncan J., Trienekens J. H., Huenchuleo C., Dogliotti S., Contesse M. E., Benitez-Altuna F. J. and Rossing W. A. 2020 Sustainability Transition Pathways Through Ecological Intensification: An Assessment of Vegetable Food Systems In Chile. Int. J. Agr. Sustain., 18(2):131-150. https://doi.org/10.1080/14735903.2020.1722561
31. Guo, L., Li, H., Cao, X., Cao, A. and Huang, M. 2021. Effect of Agricultural Subsidies on the Use of Chemical Fertilizers. J. Environ. Manage, 299: 113621.
https://doi.org/10.1016/j.jenvman.2021.113621
32. Gustavsen G.W. 2021 Sustainability and Potato Consumption. Potato Res. 64:571–586. https://doi.org/10.1007/s11540-021-09493-1
33. Hansen C. L., Thybo A. K., Bertram H. C., Viereck N., Van Den Berg F., Engelsen, S. B. 2010. Determination of Dry Matter Content in Potato Tubers by Low-Field Nuclear Magnetic Resonance (LF-NMR). J. Agr. Food Chem. 58(19):10300-10304. https://doi.org/10.1021/jf101319q
34. Haroon, M., Idrees, F., Naushahi, H.A., Afzal, R., Usman, M., Qadir, T. and Rauf, H., 2019. Nitrogen Use Efficiency: Farming Practices and Sustainability. J. Exp. Agric. Int. 36(3):1-11. https://doi.org/ 10.9734/JEAI/2019/v36i330235
35. Hunt, R. C. 2000. Labor Productivity and Agricultural Development: Boserup Revisited. Hum. Ecol. 28(2): 251-277. https://doi.org/10.1023/A:1007072120891.
36. Igiehon, N. O. and Babalola, O. O. 2018. Rhizosphere Microbiome Modulators: Contributions of Nitrogen-Fixing Bacteria towards Sustainable Agriculture. IJERPH 15(4): 574.
37. Jamieson, P. D., Porter, J. R. and Wilson, D. R. 1991. A Test of the Computer Simulation Model ARCWHEAT1 on Wheat Crops Grown in New Zealand. Field Crop Res. 27(4): 337-350. https://doi.org/10.1016/0378-4290(91)90040-3
38. Jhariya, M.K., Meena, R.S., Banerjee, A. 2021. Ecological Intensification of Natural Resources Towards Sustainable Productive System. Ecological Intensification of Natural Resources for Sustainable Agriculture. Springer. 1-28. https://doi.org/10.1007/978-981-33-4203-3_1
39. Jug, D., Đurđević, B., Birkás, M., Brozović, B., Lipiec, J., Vukadinović, V. and Jug, I., 2019. Effect of Conservation Tillage on Crop Productivity and Nitrogen Use Efficiency. SOIL TILL RES, 194: 104327.
40. Joshi, B. K., Vista, S. P., Gurung, S. B., Ghimire, K. H., Gurung, R., Pant, S., Gautam, S. and Paneru, P. B. 2020. Cultivar Mixture for Minimizing Risk in Farming and Conserving Agrobiodiversity. Traditional Crop Biodiversity for Mountain Food and Nutrition Security in Nepal. Tools and Research Results of the UNEP GEF Local Crop Project, Nepal, pp.14-24.
41. Kaab, A., Sharifi, M., Mobli, H., Nabavi-Pelesaraei, A., and Chau, K. W. 2019. Combined Life Cycle Assessment and Artificial Intelligence for Prediction of Output Energy and Environmental Impacts of Sugarcane Production. Sci. Total Environ., 664: 1005-1019. https://doi.org/10.1016/j.scitotenv.2019.02.004
42. Khan, I., Lei, H., Khan, A., Muhammad, I., Javeed, T., Khan, A. and Huo, X. 2021. Yield Gap Analysis of Major Food Crops in Pakistan: Prospects for Food Security. Environ. Sci. Pollut. Rea., 28(7): 7994-8011. https://doi.org/10.1007/s11356-020-11166-4
43. Köninger, J., Lugato, E., Panagos, P., Kochupillai, M., Orgiazzi, A. and Briones, M. J., 2021. Manure Management and Soil Biodiversity: Towards More Sustainable Food Systems in the EU. Agri. Sys., 194:103251.
44. Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A. and Lombi, E. 2019. Soil and the Intensification of Agriculture for Global Food Security. Environ. Int., 132: p.105078.
45. Kremen, C., 2020. Ecological Intensification and Diversification Approaches to Maintain Biodiversity, Ecosystem Services, and Food Production in a Changing World. Emerg. Top. Life Sci., 4(2): 229-240.
46. Lanz, B., Dietz, S., and Swanson, T. 2018. The Expansion of Modern Agriculture and Global Biodiversity Decline: An Integrated Assessment. Ecol. Econ. 144: 260-277. https://doi.org/10.1016/j.ecolecon.2017.07.018
47. Lu, H., Xie, H., Lv, T., and Yao, G., 2019. Determinants of Cultivated Land Recuperation in Ecologically Damaged Areas in China. Land Use Policy, 81:160-166. https://doi.org/10.1016/j.landusepol.2018.10.052
48. Macedo, I., Terra, J.A., Siri-Prieto, G., Velazco, J.I. and Carrasco-Letelier, L., 2021. Rice-Pasture Agroecosystem Intensification Affects Energy Use Efficiency. J. Clean. Prod, 278: 123771. https://doi.org/10.1016/j.jclepro.2020.123771
49. Maulu, S., Hasimuna, O.J., Haambiya, L.H., Monde, C., Musuka, C.G., Makorwa, T.H., Munganga, B.P., Phiri, K.J. and Nsekanabo, J.D., 2021. Climate Change Effects on Aquaculture Production: Sustainability Implications, Mitigation, and Adaptations. Front. sustain. food syst, 5:609097. https://doi.org/10.3389/fsufs.2021.609097
50. Ministry of Agriculture-Jahad. 2016. Agricultural Statistics, (Vol. 2). The Islamic Republic of Iran, Ministry of Agriculture-Jahad, Press.
51. Moll, R. H., Kamprath, E. J. and Jackson, W. A. 1982. Analysis and Interpretation of Factors Which Contribute to the Efficiency of Nitrogen Utilization. Agron. J., 74(3): 562-564. https://doi.org/10.2134/agronj1982.00021962007400030037x
52. Morales, F., Ancín, M., Fakhet, D., González-Torralba, J., Gámez, A.L., Seminario, A., Soba, D., Ben Mariem, S., Garriga, M. and Aranjuelo, I. 2020. Photosynthetic Metabolism under Stressful Growth Conditions as a Base for Crop Breeding and Yield Improvement. Plants, 9(1): 88.
53. Muchero, W., Sondreli, K. L., Chen, J. G., Urbanowicz, B. R., Zhang, J. and Singan, V. 2018. Association Mapping, Transcriptomics, and Transient Expression Identify Candidate Genes Mediating Plant-Pathogen Interactions in A Tree. PNAS. 115(45): 11573-11578.
54. Nassiri Mahallati, M., Koocheki, A. 2017. Trend Analysis of Nitrogen Use and Productivity in Wheat (Triticum aestivum L.) Production Systems of Iran. J. Agroecol., 9(2): 360-378.
55. Nehbandani, A., Soltani, A., RahemI-KarIzaki, A., Dadrasi, A., Noubakhsh, F. 2021. Determination of Soybean Yield Gap and Potential Production in Iran Using Modeling Approach and GIS. J. Integr. Agr., 20(2): 395-407. https://doi.org/10.1016/S2095-3119(20)63180-X
56. Neumann, K., Verburg, P. H., Stehfest, E., and Müller, C. 2010. The Yield Gap of Global Grain Production: A Spatial Analysis. Agr. Syst., 103(5): 316-326. https://doi.org/10.1016/j.agsy.2010.02.004
57. Pardo, A., Rolo, V., Carrascosa, A., Gonzalez-Bornay, G. and Moreno, G. 2023. Management Linked to Ecological Intensification Supports Insect Pollinators in Iberian Wood-Pastures. Landsc Ecol:1-15. https://doi.org/10.1007/s10980-023-01637-7
58. Parvizi, K., and Asadian, A. R. 2017. Effect of Defoliation Timing on Tuber Yield, Quality, and Storage Capability of Two Potato (Solanum tuberosum L.) Cultivars. Iran J. Plant Sci., 19(3): 181-194.
59. Pfiffner, L., Cahenzli, F., Steinemann, B., Jamar, L., Bjørn, M. C., Porcel, M., Tasin, M., Telfser, J., Kelderer, M., Lisek, J. and Sigsgaard, L. 2019. Design, Implementation, and Management of Perennial Flower Strips to Promote Functional Agrobiodiversity in Organic Apple Orchards: A Pan-European Study. Agric Ecosyst Environ 278: 61-71.
60. Rahman, K. M., and Zhang, D. 2018. Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability. Sustain. Sci., 10(3): 759. https://doi.org/10.3390/su10030759
61. Rasmussen, L.V., Coolsaet, B., Martin, A., Mertz, O., Pascual, U., Corbera, E., Dawson, N., Fisher, J. A., Franks, P., Ryan, C. M. 2018. Social-Ecological Outcomes of Agricultural Intensification. Nat Sustain., 1 (6): 275–282. https://doi.org/10.1038/s41893-018-0070-8
62. Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M. and Rieseberg, L. H. 2018. Trends in Global Agricultural Land Use: Implications for Environmental Health and Food Security. Annu. Rev. Plant Biol., 69: 789-815.
63. Ray, D. K., Gerber, J. S., MacDonald, G. K., West, P. C. 2015 Climate Variation Explains A Third of Global Crop Yield Variability. Nat. Commun., 6(1): 1-9. https://doi.org/10.1038/ncomms6989
64. Raven, P. H. and Wagner, D. L. 2021. Agricultural Intensification and Climate Change are Rapidly Decreasing Insect Biodiversity. PNAS, 118(2): 2002548117.
65. Ryu, M.-H., Zhang, J., Toth, T., Khokhani, D., Geddes, B. A., Mus, F., Garcia-Costas, A., Peters, J. W., Pool, P. S., Ane, J. M., and Voigt, C. A. 2020. Control of Nitrogen Fixation in Bacteria That Associate With Cereals. Nature Microbiol., 5 (2): 314–330.
66. Schmidt, R., Gravuer, K., Bossange, A.V., Mitchell, J. and Scow, K., 2018. Long-Term Use of Cover Crops and No-Till Shift Soil Microbial Community Life Strategies in Agricultural Soil. Plos One, 13(2): 0192953.
67. Sharma. L. K. and Bali, S. K. 2018. A Review of Methods to Improve Nitrogen Use Efficiency in Agriculture. Sustain. Sci., 10(1): 51-74. https://doi.org/10.3390/su10010051
68. Silva, J.V., Reidsma, P., Baudron, F., Laborte, A.G., Giller, K.E. and van Ittersum, M.K., 2021. How Sustainable Is Sustainable Intensification? Assessing Yield Gaps at Field and Farm Level Across the Globe. Glob. Food Sec, 30:100552. https://doi.org/10.1016/j.gfs.2021.100552
69. Silva, J.V., Pede, V.O., Radanielson, A.M., Kodama, W., Duarte, A., de Guia, A.H., Malabayabas, A.J.B., Pustika, A.B., Argosubekti, N., Vithoonjit, D. and Hieu, P.T.M., 2022. Revisiting Yield Gaps and the Scope for Sustainable Intensification for Irrigated Lowland Rice in Southeast Asia. Agric. Syst, 198:103383. https://doi.org/10.1016/j.agsy.2022.103383
70. Skaf, L., Buonocore, E., Dumontet, S., Capone, R., and Franzese, P. P. 2019. Food Security and Sustainable Agriculture in Lebanon: An Environmental Accounting Framework. J. Clean Prod., 209:1025-1032. https://doi.org/10.1016/j.jclepro.2018.10.301
71. Stomph, T., Dordas, C., Baranger, A., de Rijk, J., Dong, B., Evers, J., Gu, C., Li, L., Simon, J., Jensen, E. S., Jensen, Q., Wang, V. D. W. 2020. Designing Intercrops for High Yield, Yield Stability and Efficient Use Of Resources: Are There Principles? Advan. In Agron., 160(1): 1-50. https://doi.org/10.1016/bs.agron.2019.10.002.
72. Swarbreck, S. M., Wang, M., Wang, Y., Kindred, D., Sylvester-Bradley, R., Shi, W., Bentley, A. R. and Griffiths, H. 2019. A Roadmap for Lowering Crop Nitrogen RequirementTrends Plant Sci., 24(10): 892-904.
73. Timsina, J. 2018. Can Organic Sources of Nutrients Increase Crop Yields to Meet Global Food Demand? J. Agron., 8(10): 214.
74. Tscharntke, T., Grass, I., Wanger, T.C., Westphal, C. and Batáry, P. 2021. Beyond Organic Farming–Harnessing Biodiversity-Friendly Landscapes. TREE, 36(10):919-930. https://doi.org/10.1016/j.tree.2021.06.010
75. Urruty, N., Tailliez-Lefebvre, D. and Huyghe, C. 2016. Stability, Robustness, Vulnerability and Resilience of Agricultural Systems. A Review. Agron. Sustain. Dev. 36(1):1-15. https://doi. 10.1007/s13593-015-0347-5.
76. Udawatta, R. P., Rankoth, L. M. and Jose, S. 2019. Agroforestry and Biodiversity Sustainability, 11(10): 2879.
77. Verón, S. R., Paruelo, J. M. and Slafer, G. A. 2004. Inter Annual Variability of Wheat Yield in The Argentine Pampas During The 20th Century. Agr. Ecosyst. Environ., 103(1): 177-190. https://doi.org/10.1016/j.agee.2003.10.001
78. Victorio, R. G., Moreno, U., Black Jr, C. C. 1986. Growth, Partitioning, and Harvest Index of Tuber-Bearing Solanum Genotypes Grown in Two Contrasting Peruvian Environments. Plant Physiol., 82(1): 103-108. https://doi.org/10.1104/pp.82.1.103
79. Vidal, E. A., Alvarez, J. M., Araus, V., Riveras, E., Brooks, M. D., Krouk, G., Ruffel, S., Lejay, L., Carwford, N. M., Coruzzi, G. M., and Gutierrezi, R. A. 2020. Nitrate in 2020: Thirty Years From Transport to Signaling Networks. Plant Cell, 32 (7): 2094–2119.
80. Wang, Y., Zhang, Y., Zhang, R., Li, J., Zhang, M., Zhou, S. and Wang, Z. 2018. Reduced Irrigation Increases the Water Use Efficiency and Productivity of Winter Wheat-Summer Maize Rotation on the North China Plain. Sci. Total Environ., 618: 112-120.
81. Wan, N. F., Chen, J., Ji, X.Y., Chacón-Labella, J., Zhang, H., Fan, N. N., Jiang, J. X. and Li, B. 2019a. Co-Culture of Multiple Aquatic Species Enhances Vegetable Production in Coastal ShanghaiJ. Clean. Prod., 241: 118419.
82. Wan, N. F., Li, S. X., Li, T., Cavalieri, A., Weiner, J., Zheng, X. Q., Ji, X.Y., Zhang, J. Q., Zhang, H. L., Zhang, H. and Bai, N. L. 2019b. Ecological Intensification of Rice Production through Rice-Fish Co-Culture. J. Clean. Prod., 234: 1002-1012.
83. Wan, N. F., Zheng, X. R., Fu, L.W., Kiær, L. P., Zhang, Z., Chaplin-Kramer, R., Dainese, M., Tan, J., Qiu, S. Y., Hu, Y. Q. and Tian, W. D. 2020a. Global Synthesis of Effects of Plant Species Diversity on Trophic Groups and Interactions. Nat. Plants, 6(5): 503-510.
84. Wan, N. F., Su, H., Cavalieri, A., Brack, B., Wang, J. Y., Weiner, J., Fan, N. N., Ji, X. Y. and Jiang, J.X. 2020b. Multispecies Co-Culture Promotes The Ecological Intensification of Vegetable Production. J. Clean. Prod, 257: 120851.
85. Xie, H., Huang, Y., Chen, Q., Zhang, Y. and Wu, Q. 2019. Prospects for Agricultural Sustainable Intensification: A Review of Research. Land, 8(11): 157.
86. Yang, H., Wu, G., Mo, P., Chen, S., Wang, S., Xiao, Y., ang Ma, H., Wen, T., Guo, X. and Fan, G. 2020. The Combined Effects of Maize Straw Mulch and No-Tillage on Grain Yield and Water and Nitrogen Use Efficiency of Dry-Land Winter Wheat (Triticum aestivum L.). SOIL TILL RES, 197: 104485
87. Zytynska, S. E. and Meyer, S. T., 2019. Effects of Biodiversity in Agricultural Landscapes on the Protective Microbiome of Insects–A ReviewEntomol. Exp. Appl., 167(1): 2-13.
88. Zhang, Z., Gao, S., and Chu, C. 2020. Improvement of Nutrient Use Efficiency in Rice: Current Toolbox and Future Perspectives. Theor. Appl. Genet.. 133 (5): 1365–1384.
89. Zhao, J., Wang, Y., Zhao, M., Wang, K., Li, S., Gao, Z., Shi, X. and Chu, Q., 2023. Prospects for Soybean Production Increase by Closing Yield Gaps in the Northeast Farming Region, China. Field Crops Res, 293:108843. https://doi.org/10.1016/j.fcr.2023.108843