Abay, A., Barbieri, G., & Woldearegay, K. (2019). GIS-based landslide susceptibility evaluation using analytical hierarchy process (AHP) approach: The case of Tarmaber District, Ethiopia. Momona Ethiopian Journal of Science, 11(1), 14-36.
Achu, A., & Reghunath, R. (2017). Application of analytical hierarchy process (AHP) for Landslide Susceptibility Mapping: A study from southern Western Ghats, Kerala, India. Paper presented at the Disaster, Risk and Vulnerability Conference 2017.
Armin, M., Mosaffaie, J., Ghorbannia Kheybari, V., & Khairi, A. (2019). Landslide zoning and its risk management plan in Kohgiluyeh and Boyerahmad province using Haeri-Sami model. Quantitative Geomorphological Research, 7(4), 176-196.
Chen, W., Han, H., Huang, B., Huang, Q., & Fu, X. (2017). Variable-Weighted Linear Combination Model for Landslide Susceptibility Mapping: Case Study in the Shennongjia Forestry District, China. ISPRS International Journal of Geo-Information, 6(11), 347.
Chen, W., Zhang, S., Li, R., & Shahabi, H. (2018). Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Science of the total environment, 644, 1006-1018.
Dou, J., Yamagishi, H., Pourghasemi, H. R., Yunus, A. P., Song, X., Xu, Y., & Zhu, Z. (2015). An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Natural Hazards, 78(3), 1749-1776.
El Jazouli, A., Barakat, A., & Khellouk, R. (2019). GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenvironmental Disasters, 6(1), 1-12.
Gholami, M., Ghachkanlu, E. N., Khosravi, K., & Pirasteh, S. (2019). Landslide prediction capability by comparison of frequency ratio, fuzzy gamma and landslide index method. Journal of Earth System Science, 128(2), 1-22.
He, H., Hu, D., Sun, Q., Zhu, L., & Liu, Y. (2019). A landslide susceptibility assessment method based on GIS technology and an AHP-weighted information content method: A case study of southern Anhui, China. ISPRS International Journal of Geo-Information, 8(6), 266.
Joybari, J., Kavian, A. A., & Mosaffaie, J. (2017). Effect of Land Use on Landslide Movement in the Tavan District, Qazvin.
Kanungo, D., Arora, M., Sarkar, S., & Gupta, R. (2006). A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology, 85(3-4), 347-366.
Karimi Sangchini, E., Salehpour Jam, A., & Mosaffaie, J. (2022). Flood risk management in Khorramabad watershed using the DPSIR framework. Natural Hazards, 114(3), 3101-3121. doi: 10.1007/s11069-022-05507-4
Khan, H., Shafique, M., Khan, M. A., Bacha, M. A., Shah, S. U., & Calligaris, C. (2019). Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 22(1), 11-24. doi: https://doi.org/10.1016/j.ejrs.2018.03.004
Lee, S. (2007). Application and verification of fuzzy algebraic operators to landslide susceptibility mapping. Environmental Geology, 52(4), 615-623. doi: 10.1007/s00254-006-0491-y
Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1), 33-41.
Morady, H. R., Pourghasemi, H. R., Mohammdi, M., & Mahdavifar, M. R. (2010). Landslide hazard zoning using gamma fuzzy operator, with a case study of haraz watershed. ENVIRONMENTAL SCIENCES, 7(4), 129-142.
Mosaffaie, J. (2016). Application of artificial neural network, multiple-regression and index-flood techniques in regional flood frequency estimation. International Journal of Water, 10(4), 328-342.
Mosaffaie, J., Ekhtesasi, M. R., Dastorani, M. T., Azimzadeh, H. R., & Chahuki, M. A. Z. (2015). Temporal and spatial variations of the water erosion rate. Arabian journal of Geosciences, 8(8), 5971-5979.
Mosaffaie, J., & Salehpour Jam, A. (2018). Economic assessment of the investment in soil and water conservation projects of watershed management. Arabian journal of Geosciences, 11(14), 368.
Mosaffaie, J., & Salehpour Jam, A. (2021). Prioritization of factors preventing participation of rural people in soil & water conservation projects (The case of Vers watershed). Journal of Agricultural Science and Technology, 23(5), 975-986.
Mosaffaie, J., Salehpour Jam, A., & Sarfaraz, F. (2023). Landslide risk assessment based on susceptibility and vulnerability. Environment, Development and Sustainability, 1-19.
Mosaffaie, J., Salehpour Jam, A., Sarfaraz, F., & Shadfar, S. (2020). Evaluation of Landslide Susceptibility Zonation applying Fuzzy Gamma Operators in Taleghanroud Watershed of Qazvin Province. Geography and.
Nguyen, T. T. N., & Liu, C.-C. (2019). A new approach using AHP to generate landslide susceptibility maps in the Chen-Yu-Lan Watershed, Taiwan. Sensors, 19(3), 505.
Oh, H.-J., & Lee, S. (2017). Shallow Landslide Susceptibility Modeling Using the Data Mining Models Artificial Neural Network and Boosted Tree. Applied Sciences, 7(10), 1000.
Ozdemir, A., & Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180-197.
Peyrowan, H. R., & Shariat Jafari, M. (2013). Presentation of a comprehensive method for determining erodibility rate of rock units with a review on Iranian geology. Journal of Watershed Engineering and Management.
Pourghasemi, H. R., Moradi, H. R., & Fatemi Aghda, S. M. (2013). Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Natural Hazards, 69(1), 749-779. doi: 10.1007/s11069-013-0728-5
Pourghasemi, H. R., Pradhan, B., & Gokceoglu, C. (2012). Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Natural Hazards, 63(2), 965-996.
Pradhan, B., Lee, S., & Buchroithner, M. F. (2009). Use of geospatial data and fuzzy algebraic operators to landslide-hazard mapping. Applied Geomatics, 1(1), 3-15.
Pradhan, B., Youssef, A., & Varathrajoo, R. (2010). Approaches for delineating landslide hazard areas using different training sites in an advanced artificial neural network model. Geo-spatial Information Science, 13(2), 93-102.
Pradhan, B., & Youssef, A. M. (2010). Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models. Arabian journal of Geosciences, 3(3), 319-326.
Ruff, M., & Czurda, K. (2008). Landslide susceptibility analysis with a heuristic approach in the Eastern Alps (Vorarlberg, Austria). Geomorphology, 94(3-4), 314-324.
Saaty, T. L. (1980). The analytical hierarchy process, planning, priority. Resource allocation. RWS publications, USA.
Salehpour Jam, A., Mosaffaie, J., Sarfaraz, F., Shadfar, S., & Akhtari, R. (2021). GIS-based landslide susceptibility mapping using hybrid MCDM models. Natural Hazards, 1-22.
Salehpour Jam, A., Mosaffaie, J., & Tabatabaei, M. (2021). Management Responses for Chehel-Chay Watershed Health Improvement Using the DPSIR Framework. Journal of Agricultural Science and Technology, 23, 0-0.
Salehpour Jam, A., Mosaffaie, J., & Tabatabaei, M. R. (2021). Assessment of comprehensiveness of soil conservation measures using the DPSIR framework. Environmental Monitoring and Assessment, 193(1), 1-19.
Salehpour Jam, A., Mosaffaie, J., & Tabatabaei, M. R. (2023). Raster-based landslide susceptibility mapping using compensatory MADM methods. Environmental Modelling & Software, 159, 105567. doi: https://doi.org/10.1016/j.envsoft.2022.105567
Sangchini, E. K., Emami, S. N., Tahmasebipour, N., Pourghasemi, H. R., Naghibi, S. A., Arami, S. A., & Pradhan, B. (2016). Assessment and comparison of combined bivariate and AHP models with logistic regression for landslide susceptibility mapping in the Chaharmahal-e-Bakhtiari Province, Iran. Arabian journal of Geosciences, 9(3), 201.
Santos, J. G. (2015). GIS-based hazard and risk maps of the Douro river basin (north-eastern Portugal). Geomatics, Natural Hazards and Risk, 6(2), 90-114.
Saygin, F., Şişman, Y., Dengiz, O., & Şişman, A. (2023). Spatial assessment of landslide susceptibility mapping generated by fuzzy-AHP and decision tree approaches. Advances in Space Research. doi: https://doi.org/10.1016/j.asr.2023.01.057
Soltani, M. J., Motamedvaziri, B., Mosaffaei, J., Noroozi, A. A., & Ahmadi, H. (2023). Cause and effect analysis of the trend of dust storms using the DPSIR framework in the Hendijan region. International Journal of Environmental Science and Technology. doi: 10.1007/s13762-023-04882-0
TJPrl, F. (2006). An introduction to ROC analysis. Pattern Recogn Lett, 27(8), 861-874.
Turan, İ. D., Özkan, B., Türkeş, M., & Dengiz, O. (2020). Landslide susceptibility mapping for the Black Sea Region with spatial fuzzy multi-criteria decision analysis under semi-humid and humid terrestrial ecosystems. Theoretical and Applied Climatology, 140(3), 1233-1246. doi: 10.1007/s00704-020-03126-2
Van Westen, C. (1997). Statistical landslide hazard analysis. Ilwis, 2, 73-84.
Wang, M., Liu, M., Yang, S., & Shi, P. (2014). Incorporating triggering and environmental factors in the analysis of earthquake-induced landslide hazards. International Journal of Disaster Risk Science, 5(2), 125-135.
Yalcin, A., Reis, S., Aydinoglu, A. C., & Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA, 85(3), 274-287. doi: https://doi.org/10.1016/j.catena.2011.01.014