1. Abdel-Sattar, M., Al-Obeed, R.S., Aboukarima, A.M. and Eshra, D.H. 2021. Development of an Artificial Neural Network as a Tool for Predicting the Chemical Attributes of Fresh Peach Fruits. PLoS One, 16(7): e0251185. https://doi.org/10.1371/journal.pone.0251185.
2. Badenes, M.L., Martínez-Calvo, J. and Llacer, G. 1998. Estudios Comparativos de la Calidad de Frutos de 26 Variedades de Melocotones de Origen Norteamericano y dos Variedades-Población de Origen Español. Invest. Agraria. Produc. Protec. Veg., 13: 57-70.
3. Belisle, C., Phan, U.T.X., Adhikari, K. and Chavez, D.J. 2018. A Fruit Quality Survey of Peach Cultivars grown in the Southeastern United States. HortTech. 28: 189-201. https://doi.org/10.21273/HORTTECH03870-17.
4. Bielenberg, D.G. and Gasic, K. 2022. Peach [Prunus persica (L.) Batsch] Cultivars Differ In Apparent Base Temperature and Growing Degree Hour Requirement for Floral Bud Break. Front. Plant. Sci., 13: 801606. doi: 10.3389/fpls.2022.801606.
5. Byrne, D.H., Nikolic, A.N. and Burns, E.E. 1991. Variability in Sugars, Acids, Firmness, and Color Characteristics of 12 Peach Genotypes. J. Amer. Soc. Hort. Sci., 116: 1004-1006. https://doi.org/10.21273/JASHS.116.6.1004.
6. Byrne, D.H., Raseira, M.B., Bassi, D., Piagnani, M.C., Gasic, K., Reighard, G.L., Moreno, M.A. and Pérez, S. 2012. Peach. In: “Fruit breeding” (Eds.): Badenes, M.L. and Byrne, D.H. Springer, PP.505-569. http://dx.doi.org/ 10.1007/978-1-4419-0763-9_14.
7. Caliskan, O., Bayazit, S. and Sumbul, A. 2012. Fruit Quality and Phytochemical Attributes of some Apricot (Prunus armeniaca L.) Cultivars as Affected by Genotypes and Seasons. Not. Bot. Horti. Agrobo., 40: 284-294. https://doi.org/10.15835/nbha4028044.
8. Cantín, C.M., Torrents, J., Gogorcena, Y. and Moreno, M.Á. 2009a. Fruit Quality Attributes of New Peach and Nectarine Varieties under Selection in the Ebro Valley Conditions (Spain). Acta Hortic., 814: 493-500. https://doi.org/10.17660/ActaHortic.2009.814.83.
9. Cantín, C.M., Gogorcena, Y. and Moreno, M.Á. 2009b. Analysis of Phenotypic Variation of Sugar Profile in Different Peach and Nectarine [Prunus persica (L.) Batsch] Breeding Progenies. J. Sci. Food Agr., 89:1909–1917. https://doi.org/10.1002/jsfa.3672.
10. Caruso, T., Guarino, F., Lo Bianco, R. and Marra, F.P. 2015. Yield and Profitability of Modified Spanish Bush and Y-trellis Training Systems for Peach. HortSci., 50:1160–1164. https://doi.org/10.21273/HORTSCI.50.8.1160.
11. Colaric, M., Veberic, R., Stampar, F. and Hudina, M. 2005. Evaluation of Peach and Nectarine Fruit Quality and Correlations between Sensory and Chemical Attributes. J. Sci. Food Agr., 85:2611–2616. https://doi.org/10.1002/jsfa.2316.
12. Crisosto, C.H. and Costa, G. 2008. Preharvest factors affecting peach quality. In: “The Peach: Botany, Production and Uses”. (Eds.): Layne, D.R. and Bassi, D. CABI Publishing, Cambridge, MA, PP. 536-549.
13. Çalışkan, O., Bayazıt, S., Gündüz, K., Kılıç, D. and Göktaş, S. 2021a. Earliness, Yield, and Fruit Quality Characteristics in Low Chill Peach-Nectarines: A Comparison of Protected and Open Area Cultivation. Turk. J. Agric. For., 45: 191-202. https://doi.org/10.3906/tar-2005-30.
14. Çalışkan, O., Kılıç, D. and Bayazıt, S. 2021b. Effects of Bud Feed Application on Fruit Set, Yield and Fruit Quality in ‘Mikado’ and ‘Mogador’ Apricot Cultivars. Mustafa Kemal Univ. J. Agric. Sci., 26: 345-354. https://doi.org/10.37908/mkutbd.907725.
15. Erez, A., Fishman, S., Linsley-Noakes, G.C. and Allan, P. 1990. The Dynamic Model for Rest Completion in Peach Buds. Acta Hortic., 276: 165 174. https://doi.org/10.17660/ActaHortic.1990.276.18.
16. FAOSTAT. 2022. Food and Agriculture Organization Statistical Database. http://faostat.fao.org/default.aspx. [Accessed on 30 July 2022].
17. Farina, V., Lo Bianco, R. and Mazzaglia, A. 2019. Evaluation of Late-Maturing Peach and Nectarine Fruit Quality by Chemical, Physical, and Sensory Determinations. Agriculture, 9: 189. https://doi.org/ 10.3390/agriculture9090189.
18. Font i Forcada, C., Reig, G., Mestre, L., Mignard, P., Betrán, J.A. and Moreno, M.Á. 2020. Scion × Rootstock Response on Production, Mineral Composition and Fruit Quality under Heavy-Calcareous Soil and Hot Climate. Agronomy, 10: 1159. https://doi.org/10.3390/agronomy10081159.
19. Fyhrie, K., Prats-Llinàs, M.T., López, G., DeJong, T.M. 2018. How Does Peach Fruit Set on Sylleptic Shoots Borne on Epicormics Compare with Fruit Set on Proleptic Shoots? Eur. J. Hortic. Sci., 83: 3-11. https://doi.org/10.17660/eJHS.2018/83.1.1
20. Ghrab, M., Zitouna, R., Masmoudi, M.M. and Mechlia, N.B. 2016. Phenology and Yield Efficiency of Early, Mid-, and Late-Maturing Cultivars of Peach in Irrigated Orchards under Mediterranean Climate. Int. J. Fruit Sci., 16: 323–334. http://dx.doi.org/10.1080/15538362.2015.1137532.
21. Guizani, M., Maatallah, S., Dabbou, S., Serrano, M., Hajlaoui, H., Helal, A.N. and Kilani-Jaziri, S. 2019. Physiological Behaviors and Fruit Quality Changes in Five Peach Cultivars during Three Ripening Stages in A Semi‑Arid Climate. Acta Physiol. Plant., 41: 154. https://doi.org/10.1007/s11738-019-2950-6.
22. Hoying, S.A., Robinson, T.L. and Andersen, R.L. 2007. More Productive and Profitable Peach Planting Systems. New York State Hortic. Soc., 15: 13-18.
23. Johnson, R.S. 2008. Nutrient and Water Requirements of Peach Trees. In: “The Peach: Botany, Production and Uses”. (Eds.): Layne, D.R. and Bassi, D. CABI Publishing, Cambridge, MA, PP. 303-321. https://doi.org/10.1079/9781845933869.0000.
24. Kader, A.A. 1999. Fruit Maturity, Ripening, and Quality Relationships. Acta Hortic., 485: 203-208. https://doi.org/10.17660/ActaHortic.1999.485.27
25. Kaşka, N., Onur, S., Onur, C. and Çınar, A. 1981 Akdeniz bölgesi için erkenci kayısı çeşitlerinin seleksiyonu. TÜBİTAK-TOAG Sonuç Raporu, 30s, Adana, Türkiye.
26. Kaşka, N. 2001. Türkiye’nin sert çekirdekli meyvelerde üretim hedefleri üzerine öneriler. I. Sert Çekirdekli Meyveler Sempozyumu. 25-28 Eylül, Yalova, Türkiye, PP. 1-16.
27. Lopez, G. and DeJong, T.M. 2007. Spring Temperatures have a Major Effect on Early Stages of Peach Fruit Growth. J. Hortic. Sci. Biotech., 82: 507-512. https://doi.org/10.1080/14620316.2007.11512266.
28. Lopez, G., Johnson, R.C. and DeJong, T.M. 2007. High Spring Temperatures Decrease Peach Fruit Size. Calif. Agric., 61: 31-34. https://doi.org/10.3733/ca.v061n01p31.
29. Matias, R.G.P., Bruckner, C.H., Carneiro, P.C.S., Silva, D.F.P., Silva, J.O.D.C. 2014. Repeatability, Correlation and Path Analysis of Physical and Chemical Characteristics of Peach Fruits. Rev. Bras. Frutic., 36: 971-979. https://doi.org/10.1590/0100-2945-272/13.
30. Mazzoni, L., Medori, I., Balducci, F., Marcellini, M., Acciarri, P., Mezzetti, B., Capocasa, F. 2022. Branch Numbers and Crop Load Combination Effects on Production and Fruit Quality of Flat Peach Cultivars (Prunus persica (L.) Batsch) Trained as Catalonian Vase. Plants, 11:308. https://doi.org/10.3390/plants11030308.
31. Milatović, D., Nikolić, D. and Đurović, D. 2010. Variability, Heritability and Correlations of Some Factors Affecting Productivity in Peach. Hort. Sci. (Prague), 37: 79-87. https://10.17221/63/2009-HORTSCI.
32. Neri, F. and Brigati, S. 1994. Sensory and Objective Evaluation of Peaches. In: “The Postharvest Treatment of Fruit and Vegetables”. (Eds.): De Jager, A., Jhonson, A. and Hohn, E. European Commission: Brussels, Belgium, PP. 107–115.
33. Neri, D., Giovannini, D., Massai, R., Di Vaio, C., Sansavini, S., Del Vecchio, G.L., Guarino, F., Mennone, C., Abeti, D. and Colombo, R. 2010. Labour and Yield Efficiency of North and South Peach Orchards in Italy. Italus Hortus, 17: 71-87.
34. Rawandoozi, Z., Hartman, T., Byrne, D. and Carpenedo, S. 2021. Heritability, Correlation, and Genotype by Environment Interaction of Phenological and Fruit Quality Traits in Peach. J. Amer. Hort. Sci., 146: 56-67. https://doi.org/10.21273/JASHS04990-20.
35. Richardson, E.A., Seeley, S.D., Walker, D.R. 1974. A Model for Estimating the Completion of Rest for “Redhaven” and “Elberta” Peach Trees. HortSci., 9: 331-332.
36. Robinson, T., Hoying, S., Reginato, G., Kviklys, D. 2012. Fruit Size of High Density Peaches is Smaller than Low-Density Systems. Acta Hortic., 962: 425-432. https://doi.org/10.17660/ActaHortic.2012.962.58.
37. SAS Institute. 2005. STAT Guide for Personal Computers. Version 9.1.3. SAS Institute, North Carolina, USA.
38. Sawamura, Y., Suesada, Y., Sugiura, T. and Yaegaki, H. 2017. Chilling Requirements and Blooming Dates of Leading Peach Cultivars and A Promising Early Maturing Peach Selection, Momo Tsukuba 127. Hortic. J., 86: 426-436. https://doi.org/10.2503/hortj.OKD-052.
39. Sutton, M., Doyle, J., Chavez, D. and Malladi, A. 2020. Optimizing Fruit-Thinning Strategies in Peach (Prunus persica) Production. Horticulturae, 6: 41. https://doi.org/10.3390/horticulturae6030041.
40. TUIK. 2022. Turkish Statistical Institute. https://www.tuik.gov.tr/. [Accessed on 30 July 2022].
41. Wei, T. and Simko, V. 2021. R Package “corrplot”: Visualization of A Correlation Matrix (Version 0.84). https://github.com/taiyun/corrplot. [Accessed on 05 August 2022].
42. Weinberger, J.H. 1950. Chilling Requirements of Peach Varieties. J. Amer. Soc. Hortic. Sci., 56: 122-128.
43. Wert, T.W., Williamson, J.G., Chaparro, J.X., Miller, E.P. and Rouse, R.E. 2009. The Influence of Climate on Fruit Development and Quality of Four Low-Chill Peach Cultivars. HortSci., 44: 666-670. https://doi.org/10.21273/HORTSCI.44.3.666.
44. Westwood, M.N. 1995. Temperate Zone Pomology. Timber Press, Portland, OR, USA, P. 523.