Efficacy of Ascorbic Acid as A Cofactor to Increase Irrigation Water-Use Efficiency (IWUE) and Mung Bean (Vigna Radiata L.) Yield

Document Type : Original Research

Authors
Department of Agronomy, Dezful Branch, Islamic Azad University, Dezful, Islamic Republic of Iran.
Abstract
Ascorbic Acid (AsA) is a water-soluble antioxidant that makes plants resistant to environmental stresses by neutralizing free radicals. However, it is unknown to what extent this antioxidant may help Improve Irrigation Water Use Efficiency (IWUE) and reduce the adverse effects of water deficit on mung bean growth and yield. In an attempt to clarify whether exogenous application of this antioxidant could alleviate the adverse effects of water deficit on mung bean plants, two seasons (2019 and 2020) of field experiments were conducted using twelve combinations of three AsA levels (distilled water as a control and 10 and 20 mM of AsA) and four irrigation water amounts (25, 50, 75, and 100% of the plant water requirement). Based on the results, the maximum IWUE was obtained with W50AsA20 in the two seasons. The beneficial effect of AsA application on IWUE was determined under water stress conditions (W50). High water deficit (W50) plus applying 20 mM ascorbic acid, i.e. W(50)AsA(20) treatment, improved seed yield about 43.7% as in the two seasons compared to high water deficit without ascorbic acid, i.e. W(50)AsA(0). In 2019 and 2020, water saving in W(50)AsA(20) compared to the control, was equal to 50% (2,550 and 2,500 m3 ha-1, respectively). In W(50)AsA(20) treatment, the increase of seed yield ranged between 79-107% in both seasons. Thus, the results reveal the potency of AsA to save water under low water supply and increase yield in mung bean fields.

Keywords

Subjects


1) Abdul Wahed, M.S.A., Amin, A.A., and El Rashad, S.M. (2006). Physiological effect of some bioregulators on vegetative growth, yield and chemical constituents of yellow maize plants. World Journal of Agricultural Sciences., 2(2): 149-155.
2) Akram, N.A., Khan, I., Javed, Z., Khan, Z., Mahmood, S., Ashraf, M., Shafiq, S., Naz, H. (2018). Modulation in some key biochemical attributes in drought stressed pea (Pisum sativum L.) plants treated with different plant growth regulators. Agrochimica., 62(4): 337-351.
3) Akram, N.A.; Shafiq, F.; Ashraf, M. (2017). Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers in Plant Science., 8: 613.
4) Alghabari, F. (2020). Evaluating mungbean performance under different types and rates of humic acid application in arid conditions of Saudi Arabia, International Journal of Agriculture and Biology., 24: 1273-1278.
5) Allen, R.G., Pereira, L.S., Raes, D., Smith, M. (1998). Crop Evapotranspiration–Guidelines for Computing Crop Water Requirements–FAO Irrigation and Drainage, Paper 56. Rome, Italy.
6) Amin, A.A., Rashad, E.M., and Gharib, A.E. (2008). Changes in morphological, physiological and reproductive characters of Wheat plants as affected by foliar application with Salicylic acid and Ascorbic acid. Australian Journal of Basic and Applied Sciences., 2(2): 252-261.
7) Arnon, D. I. (1949). Copper enzyme polyphenoloxides in isolated chloroplast in Beta vulgaris. Plant Physiol., 24(1): 1–15.
8) Baghizadeh, A. Ghorbanli, M. Rezaei, H.M. and Mozafri, H. (2009). Evaluation of Interaction effect of drought stress with ascorbate and salicylic acid on some of physiological and Biochemical parameters in okra (Hibiscus esculentus L.). Journal Biological sciences. 4(4): 380-387.
9) Barat Zadeh, S., Saki Nejad, T., & Babaei Nejad, T. (2019). Effect of potassium nano-chelate and ascorbic acid on grain yield and some qualitative characteristics of cowpea (Vigna unguiculata L., Kamran cultivar). Journal of Plant Production Sciences., 9(2): 149-160.
10) Barzegar, T., Fateh, M., & Razavi, F. (2018). Enhancement of postharvest sensory quality and antioxidant capacity of sweet pepper fruits by foliar applying calcium lactate and ascorbic acid. Scientia Horticulturae, 241: 293-303. ‏
11) Benedetti, C.E., and Arruda, P. (2002). Altering the expression of the chlorophylls gene ATHCOR1 in transgenic Arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratio. Plant Physiol., 128(4): 1255-1263.
12) Burton, G and Ingold, K. (1984). Beta-Carotene: An unusual type of lipid antioxidant. Science., 224 (4649): 569–573.
13) Bwambale, E., Abagale, F.K., Anornu, G.K. (2022). Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review, Agricultural Water Management, 260, 107324, doi:10.1016/j.agwat.2021.107324.
14) Canavar, Ö., Götz, K., Ellmer, F., Chmielewski, F., Kaynak, M.A. (2014). Determination of the relationship between water use efficiency, carbon isotope discrimination and proline in sunflower genotypes under drought stress. Australian Journal of Crop Science., 8(2): 232–242.
15) Dehgan, F., Gholami, M., & Azizi, A. (2013). Interaction Effect of Foliar Application of Ascorbic Acid and Salt Stress on Some Physiological and Biochemical Characteristics of Strawberry (Fragaria × ananassa Duch) cv. Selva., 5(1): 47-56.
16) Dolatabadian, A., Jouneghani, R.S. (2009). Impact of exogenous ascorbic acid on antioxidant activity and some physiological traits of common bean subjected to salinity stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca., 37(2):165–172.
17) Dolatabadian, A., Modares Sanavy, A.M., and Asilan, K. (2009). Effect of ascorbic acid foliar application on yield, yield component and several morphological traits of grain corn under water deficit stress conditions. Notulae Scientia Biologicae., 2(3): 45-50.
18) Dolatabadian, A.; Sanavy, S.A.M.M.; Asilan, K.S. (2010). Effect of Ascorbic Acid Foliar Application on Yield, Yield Component and several Morphological Traits of Grain Corn under Water Deficit Stress Conditions. Notulae Scientia Biologicae., 2(1): 45–50.
19) Doorenbos, J., Pruitt, W.O., Aboukhaled, A., Damagnez, J., Dastane, N.G., Van Den Berg, C., Rijtema, P.E., Ashford, O.M., Frere, M. (1977). Guidelines for predicting crop water requirements FAO irrigation and drainage. FAO, Rome.
20) El-Beltagi, H. S., Mohamed, H. I., & Sofy, M. R. (2020). Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules, 25(7): 1702.‏
21) El-Bially, M., Saudy, H., El-Metwally, E., Shahin, M. (2018). Efficacy of ascorbic acid as a cofactor for alleviating water deficit impacts and enhancing sunflower yield and irrigation water–use efficiency. Agricultural Water Management., 208(1): 132-139.
22) Emadodin, I.; Reinsch, T.; Taube, F. (2019). Drought and Desertification in Iran. Hydrology., 6, 66. Doi:10.3390/hydrology6030066
23) English, M.J. (1990). Deficit irrigation. I. Analytical framework. Journal of Irrigation and Drainage Engineering-asce, 116(3): 399-412.
24) Flexas, J., Medrano, H. (2002). Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot., 89(2):183–189. doi: 10.1093/aob/mcf027.
25) Gaafar, A.A., Ali, S.I., El-Shawadfy, M.A., Salama, Z.A., Sękara, A., Ulrichs, C., Abdelhamid, M.T. (2020). Ascorbic Acid Induces the Increase of Secondary Metabolites, Antioxidant Activity, Growth, and Productivity of the Common Bean under Water Stress Conditions. Plants., 9(5): 627. Doi:10.3390/plants9050627
26) Ghorbanli, M., Adib hashemi, N., & Peyvandi, M. (2010). Study of salinity and ascorbic acid on some physiological responses of Nigella sativa L. Iranian Journal of Medicinal and Aromatic Plants Research., 26(3): 370-388. doi: 10.22092/ijmapr.2010.6799
27) Hafez, E., & Gharib, H. (2016). Effect of exogenous application of ascorbic acid on physiological and biochemical characteristics of wheat under water stress. International Journal of Plant Production, 10(4): 579-596. doi: 10.22069/ijpp.2016.3051
28) Hana, F.R., Abdo, F.A. and Anton, N.A. (2001). Response of wheat plant to foliar application with ascorbic acid copper and boron. Journal of Agricultural Science, 26(10): 5971-5983.
29) Helrich, K. (1990). Official Methods of Analysis. Vitamin C (Ascorbic Acid), 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990; pp. 1058–1059.
30) Hussein, Z. K., and Khursheed, M. Q. (2014). Effect of foliar application of ascorbic acid on growth, yield components and some chemical constituents of wheat under water stress conditions. Jordan Journal of Agricultural Sciences., 10(1): 1–15.
31) Jaleel, C.A., Manivannan, P., Sankar, B.,Kishorekumar, A.,Gopi, R., Somasundaram, R., Panneerselvam, R. (2007). Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress, Colloids Surf B Biointerfaces., 60(1):7-11. doi: 10.1016/j.colsurfb.2007.05.012.
32) Javed, S.; Bukhari, S.A.; Ashraf, M.Y.; Mahmood, S.; Iftikhar, T. (2014). Effect of salinity on growth, biochemical parameters and fatty acid composition in safflower (Carthamus tinctorius L.). Pakistan Journal of Botany., 46(6):1153-118
33) Jayakumar, K., Jaleel, C.A., Vijayarengan, P. (2007). Changes in growth, biochemical constituents and antioxidant potentials in radish (Raphanus sativus L.) under cobalt stress., Turkish Journal of Biology., 31 (3):112-117
34) Kang, Y., Kim, S., Kim, M. et al. (2014). Genome sequence of mungbean and insights into evolution within Vigna species., Nature Communications, 5 (1): doi: 10.1038 /ncomms6443.
35) Khalid, H, Z. and Qader Khursheed, M. (2014). Effect of foliar application of ascorbic acid on growth, yield components and some chemical constituents of wheat under water stress conditions. Jordan Journal of Agricultural Sciences., 10(1): 1-15.
36) Lei, Z.Y., Han, I.M., Yi, X.P., Zhang, W.F., Zhang, Y.L. (2018). Coordinated variation between veins and stomata in cotton and its relationship with water-use efficiency under drought stress. Photosynthetica., 56(1):1326–1335. doi: 10.1007/s11099-018-0847-z.
37) Li, Z., Feng, B., Wang, W., Yang, X., Wu, P., Zhuo, L. (2022). Spatial and temporal sensitivity of water footprint assessment in crop production to modeling inputs and parameters, Agricultural Water Management, 271(1), doi:10.1016/j.agwat.2022.107805.
38) Madany, M., and Khalil, R. (2017). Seed priming with ascorbic acid or calcium chloride mitigates the adverse effects of drought stress in sunflower (Helianthus annuus L.) seedlings. Egyptian Journal of Experimental Biology (Botany)., 13(1): 119 – 133.
39) Manivannan, P., Jaleel, C.A., Sankar, B., Kishorekumar, A., Somasundaram, R., Alagu., Lakshmanan, G.M., Panneerselvam, R. (2007). Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids Surf B Biointerfaces., 59(1): 141–149
40) Moradi Topchaei, M., Saifzadeh, S., Zakirin, H. R. and Voladabadi, S. A. R. (2016). Investigating the effect of foliar spraying of methanol and ascorbic acid on the growth and yield of peanuts under dry conditions. Quarterly journal of physiological research of agricultural plants., 9 (36): 65-82.
41) Mosleh Arany, A., Rafiei, A., Tabande, A., & Azimzadeh, H. R. (2018). Morphological and physiological responses of root and leave in Gleditschia caspica to salinity stress. Iranian Journal of Plant Biology., 9(4): 1-12. doi: 10.22108/ijpb.2017.94779.0
42) Naz, H., Akram, N.A., Ashraf, M. (2017). Impact of ascorbic acid on growth and some physiological attributes of cucumber (Cucumis sativus) plants under water-deficit conditions. Pakistan Journal of Botany., 48(1): 877–883.
43) Pazuki, A., Rezaei, H., Habibi, D and Paknejad, F. (2011). Effect of drought stress, foliar application of ascorbate and gibberellin on some morphological traits, relative water content of leaves and cytoplasmic membrane stability of thyme (Thymus vulgaris L.). Journal of Agriculture and Plant Breeding., 8 (1): 1-13.
44) Qin, L., Chen, S., Xie, L., Yu, Q., Chen, Y., Xie, J. (2022). Recent advances in Mungbean polysaccharides: Extraction, physicochemical properties and biological activities, Process Biochemistry., 121: 248-256, doi: 10.1016/j.procbio.2022.07.014.
45) Rachaputi, R.C.N., Sands, D., McKenzie, K., Lehane, J., Agius, P., Seyoum, S., Peak, A. (2019). Water extraction patterns of mungbean (Vigna radiata) in diverse subtropical environments, Agricultural Water Management., 219: 109-116, doi: 10.1016/j.agwat.2019.04. 007.
46) Reddy, A.R., Chiatanya, K.V., Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants, Journal of Plant Physiology., 161: 1189-1202
47) Rigano, D., Sirignano, C., Taglialatela-Scafati, O. (2017). The potential of natural products for targeting PPARα. Acta Pharmaceutica Sinica B., 7(4): 427–438.
48) Sajedi, N., Ardakani, M. R., Sajedi, A, & Bahrami, A. H. (2010). Absorption of some nutrients under the influence of mycorrhiza, different levels of zinc and drought stress in corn. Agricultural Research of Iran., 8(5): 784-791. doi: 10.22067/gsc.v8i5.8020
49) Salem, H.M., Abdel Rahman, S., and Mohamed, S.I. (2000). Response of sugar beet plants to boron and ascorbic acid under field conditions. Journal Fac Educ Ain Shams Univ., 48:1-20.
50) Salingpa, T. W., Lal, E. P., & Shukla, P. K. (2018). Effect of foliar application of salicylic acid on growth, yield, physiological and biochemical characteristics of mung bean (Vigna radiata L.) under salt stress. Journal of Pharmacognosy and Phytochemistry, 7(6): 1857-1860.‏
51) Shafiq, S., Akram, N.A., Ashraf, M., Arshad, A. (2014). Synergistic effects of drought and ascorbic acid on growth, mineral nutrients and oxidative defense system in canola (Brassica napus L.) plants. Acta Physiologiae Plantarum., 36: 1539–1553.
52) Shahrukhnia, M. A., Jokar, L., Rakhshanderoo, M. (2016). Investigating the effect of water stress using leaf temperature and soil moisture indicators on the yield and efficiency of tomato juice consumption. Irrigation and water engineering of Iran., 6 (26): 97-111.
53) Sharma, R. K., and M. Agrawel. (2006). Single and combined effects of cadmium and zinc on carrots: uptake and bioaccumulation. Journal of Plant Nutrition., 31: 19-34.
54) Sherin, G., Raj Aswathi, K.P., Puthur, J.T. (2022). Photosynthetic functions in plants subjected to stresses are positively influenced by priming, Plant Stress., 4:100079, doi: 10.1016/j.stress.2022.100079.
55) Shirzadi Laskookalayeh, S., Mardani Najafabadi, M., Shahnazari, A. (2022). Investigating the effects of management of irrigation water distribution on farmers' gross profit under uncertainty: A new positive mathematical programming model, Journal of Cleaner Production., 351: 131277, doi: 10.1016/j.jclepro.2022.131277.
56) Wang, B., Hu. H.L., Hu, T.X., Shi, D., Hu, Y., Zhou, X., Tan, F. (2019). Effects of drought stress on photosynthetic characteristics and growth of Phoebe zhennan seedlings. J Northwest A&f Univ., 47(2):79-87.
57) Wang, Q., Huang, N., Cai, H., Chen, X., Wu, Y. (2023). Water strategies and practices for sustainable development in the semiconductor industry, Water Cycle., 4: 12-16. doi:10.1016/j.watcyc.2022.12.001.