Long Non-Coding RNAs Induce Fatty Liver during Developmental Stages in Laying Hen

Document Type : Original Research

Authors
1 Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
Abstract
Fatty Liver Hemorrhagic Syndrome (FLHS) is common in poultry. Long non-coding RNAs (lncRNAs) regulate gene expression in a variety of ways at epigenetic, chromatin remodeling, transcriptional, and translational levels. Chicken liver produces lipoproteins and most of the precursors to egg yolk with the help of RNA such as MicroRNAs (miRNAs) and lncRNAs. In order to analyze lncRNAs in liver, RNA-seq data of six samples were downloaded from National Center for Biotechnology Information (NCBI) (3 birds with fatty livers from the paternal group and 3 control birds).Then, using the DESeq2 package, the difference in expression of lncRNAs in the samples was analyzed. Functional enrichment analysis was established by STRING and the PPI network visualized by Cytoscape. Annotation of the data was carried out by DAVID 6.8. The biological pathways were searched in Kyoto Encyclopedia of Genes and Genomes (KEGG). The results of the analysis of Differentially Expressed Genes (DEGs) showed that there were 24356 annotated genes. Also, 101 lncRNAs were found. Gene Ontology (GO) term enrichment analysis suggested that DEGs significantly enriched in metallocarboxypeptidase activity, protein ubiquitination, etc. KEGG pathway analysis showed that DEGs related with biosynthesis of antibiotics and biosynthesis of amino acids (P< 0.05). Examination of gene loci revealed that the expression process of GCGR, PDK3 and PCK1 genes was in line with the expression of neighboring lncRNAs. Examination of this number of lncRNAs along with their target genes can help in selecting laying hen lines with less chance of developing fatty livers.

Keywords

Subjects


1. Arretxe, E., Armengol, S., Mula, S., Chico, Y., Ochoa, B. and Martínez, M.J. 2015. Profiling of promoter occupancy by the SND1 transcriptional coactivator identifies downstream glycerolipid metabolic genes involved in TNFα response in human hepatoma cells. J. Nuc. aci. Res., 43(22): 10673-10688.
2. Canal, F., Anthony, E., Lescure, A., Del Nery, E., Camonis, J., Perez, F., Ragazzon, B. and Perret, C. 2015. A kinome siRNA screen identifies HGS as a potential target for liver cancers with oncogenic mutations in CTNNB1. BMC cancer., 15(1): 1-12.
3. Chang, Y.Y., Yen, C.J., Chan, S.H., Chou, Y.W., Lee, Y.P., Bao, C.Y., Huang, C.J. and Huang, W. 2018. NEK2 promotes hepatoma metastasis and serves as biomarker for high recurrence risk after hepatic resection. Annals of hepatology., 17(5): 843-456.
4. Chen, J., Cui, X., Shi, C., Chen, L., Yang, L., Pang, L., Zhang, J., Guo, X., Wang, J. and Ji, C. 2015. Differential lncRNA expression profiles in brown and white adipose tissues. Molecular Genetics and Genomics., 290(2): 699-707.
5. Chen, Y., Huang, H., Xu, C., Yu, C. and Li, Y. 2017. Long non-coding RNA profiling in a non-alcoholic fatty liver disease rodent model: new insight into pathogenesis. J. International journal of molecular sciences., 18(1): 21.
6. Chen, Z. 2016. Progress and prospects of long noncoding RNAs in lipid homeostasis. J. Mol. met., 5(3): 164-170.
7. Devan, A.R., Kumar, A.R., Nair, B., Anto, N.P., Muraleedharan, A., Mathew, B., Kim, H. and Nath, L.R. 2021. Insights into an Immunotherapeutic Approach to Combat Multidrug Resistance in Hepatocellular Carcinoma. Pharmaceuticals., 14(7): 656.
8. Duan, J., Shao, F., Shao, Y; Li, J., Ling, Y., Teng, K., Li, H. and Wu, C. 2013. Androgen inhibits abdominal fat accumulation and negatively regulates the PCK1 gene in male chickens. PLOS one., 8(3): e59636.
9. de Souza Khatlab, A., Del Vesco, A.P., Gasparino, E. and de Oliveira Neto, A.R. 2018. Gender and age effects on the expression of genes related to lipid metabolism in broiler’s liver. Czech Journal of Animal Science., 63(3): 103-109.
10. Guo, X., Zhang, W., Li, M., Gao, P., Hei, W., He, Z., Wu, Y., Liu, J., Cai, C., Li, B. and Cao, G. 2019. Transcriptome profile of skeletal muscle at different developmental stages in Large White and Mashen pigs. Canadian Journal of Animal Science., 99(4): 867-880.
11. Huang, X., Glessner, J.T., Huang, J., Zhou, D., March, M.E., Wang, H., Xia, Q., Hakonarson, H. and Li, J. 2021. Discovery of Novel Host Molecular Factors Underlying HBV/HCV Infection. Frontiers in cell and developmental biology., 9: 690882.
12. Kanda, T., Matsuoka, S., Yamazaki, M., Shibata, T., Nirei, K., Takahashi, H., Kaneko, T., Fujisawa, M., Higuchi, T., Nakamura, H. and Matsumoto, N. 2018. Apoptosis and non-alcoholic fatty liver diseases. World journal of gastroenterology., 24(25): 2661.
13. Karapetyan, A.R., Buiting, C., Kuiper, R.A. and Coolen, M.W. 2013. Regulatory roles for long ncRNA and mRNA. Cancers., 5(2): 462-490.
14. Lin, C.W., Huang, T.W., Peng, Y.J., Lin, Y.Y., Mersmann, H.J. and Ding, S.T. 2021. A novel chicken model of fatty liver disease induced by high cholesterol and low choline diets. J. Poult. Sci., 100(3): 100869.
15. Li, Q., Liu, X., Jin, K., Lu, M., Zhang, C., Du, X. and Xing, B. 2017. NAT10 is upregulated in hepatocellular carcinoma and enhances mutant p53 activity. BMc cancer., 17(1): 1-10.
16. Lin, T., Li, L., Liang, C. and Peng, L. 2021. Network Pharmacology-Based Investigation of the Therapeutic Mechanisms of Action of Danning Tablets in Nonalcoholic Fatty Liver Disease. Evidence-Based Complementary and Alternative Medicine., 2021.
17. Liu, Z., Chen, M., Zhao, R., Huang, Y., Liu, F., Li, B. and Qin, Y. 2020. CAF-induced placental growth factor facilitates neoangio genesis in hepatocellular carcinoma. Acta Biochimica et Biophysica Sinica., 52(1): 18-25.
18. Ning, C., Ma, T., Hu, S., Xu, Z., Zhang, P., Zhao, X., Wang, Y., Yin, H., Hu, Y., Fan, X. and Zeng, B. 2020. Long Non-coding RNA and mRNA profile of liver tissue during four developmental stages in the chicken. Frontiers in genetics., 11: 574.
19. Ogunwobi, O.O., Harricharran, T., Huaman, J., Galuza, A., Odumuwagun, O., Tan, Y., Ma, G.X. and Nguyen, M.T. 2019. Mechanisms of hepatocellular carcinoma progression. World journal of gastroenterology., 25(19): 2279.
20. Qin, F., Zhang, J., Gong, J. and Zhang, W. 2021. Identification and Validation of a Prognostic Model Based on Three Autophagy-Related Genes in Hepatocellular Carcinoma. BioMed Research International., 2021.
21. Shabgah, A.G., Norouzi, F., Hedayati-Moghadam, M., Soleimani, D., Pahlavani, N. and Navashenaq, J.G. 2021. A comprehensive review of long non-coding RNAs in the pathogenesis and development of non-alcoholic fatty liver disease. Nutrition & Metabolism., 18(1): 1-15.
22. Shaw, T.A., Singaravelu, R., Powdrill, M.H., Nhan, J., Ahmed, N., Özcelik, D. and Pezacki, J.P. 2018. MicroRNA-124 Regulates Fatty Acid and Triglyceride Homeostasis. iScience 2018., 10: 149–157.
23. Song, X., Cao, G., Jing, L., Lin, S., Wang, X., Zhang, J., Wang, M., Liu, W. and Lv, C. 2014. Analysing the relationship between lnc RNA and protein‐coding gene and the role of lnc RNA as ce RNA in pulmonary fibrosis. Journal of cellular and molecular medicine., 18(6): 991-1003.
24. Sulaiman, S.A., Muhsin, N.I. and Jamal, R. 2019. Regulatory non-coding RNAs network in non-alcoholic fatty liver disease. Frontiers in physiology., 10: 279.
25. Tan, X., Liu, R., Xing, S., Zhang, Y., Li, Q., Zheng, M., Zhao, G. and Wen, J. 2020. Genome-wide detection of key genes and epigenetic markers for chicken fatty liver. International journal of molecular sciences., 21(5): 1800.
26. Tan, X., Liu, R., Zhang, Y., Wang, X., Wang, J., Wang, H., Zhao, G., Zheng, M. and Wen, J. 2021. Integrated analysis of the methylome and transcriptome of chickens with fatty liver hemorrhagic syndrome. BMC genomics., 22(1): 1-9.
27. Trott, K.A., Giannitti, F., Rimoldi, G., Hill, A., Woods, L., Barr, B., Anderson, M. and Mete, A. 2014. Fatty liver hemorrhagic syndrome in the backyard chicken: a retrospective histopathologic case series. Veterinary pathology., , 51(4): 787-795.
28. Wang, J., Wang, Y., Li, X., Li, J. and Leung, F.C. 2008. Cloning, tissue distribution, and functional characterization of chicken glucagon receptor. J. Pou. scie., 87(12): 2678-2688.
29. Yin, F., Sharen, G., Yuan, F., Peng, Y., Chen, R., Zhou, X., Wei, H., Li, B., Jing, W. and Zhao, J. 2017. TIP30 regulates lipid metabolism in hepatocellular carcinoma by regulating SREBP1 through the Akt/mTOR signaling pathway. Oncogenesis., 6(6): e347-e347.
30. Yang, F., Ruan, J., Wang, T., Luo, J., Cao, H., Song, Y., Huang, J. and Hu, G. 2017. Improving effect of dietary soybean phospholipids supplement on hepatic and serum indexes relevant to fatty liver hemorrhagic syndrome in laying hens. Anim. Sci. J., 88(11): 1860-1869.
31. Zhang, X; Zhang, J; Wang, R; Guo, S; Zhang, H; Ma, Y; Liu, Q; Chu, H; Xu, X; Zhang, Y and Yang, D (2016). Hypermethylation reduces the expression of PNPLA7 in hepatocellular carcinoma. Oncology letters., 12(1): 670-674.
32. Zhang, Y., Liu, Z., Liu, R., Wang, J., Zheng, M., Li, Q., Cui, H., Zhao, G. and Wen, J. 2018. Alteration of hepatic gene expression along with the inherited phenotype of acquired fatty liver in chicken. Genes., 9(4): 199.
33. Zheng, J., Wu, H., Zhang, Z. and Yao, S. 2021. Dynamic co-expression modular network analysis in nonalcoholic fatty liver disease. Hereditas., 158(1): 1-14.