Quantitative Evaluation of Chickpea Fusarium Wilt

Document Type : Original Research

Authors
1 Division of Biochemistry Science and Technology, Department of Biology, Institute of Natural and Applied Sciences, Gaziantep University, Gaziantep, Turkey.
2 Division of Botanical, Department of Biology, Gaziantep University, Gaziantep, Turkey.
3 Division of Molecular Biology, Department of Biology, Faculty of Arts and Sciences, Gaziantep University, Gaziantep, Turkey.
Abstract
Fusarium Oxysporum f. sp. Ciceris (FOC) is the causal agent of Fusarium wilt, a destructive and widespread disease of chickpea. Rapid and accurate identification and detection of plant pathogens are essential for timely Disease Management (DM) strategies with appropriate measures. This study aimed to quantitatively determine FOC by using Quantitative Real-Time Polymerase Chain Reaction (qPCR) technique with specific primer pairs [Histone (H3) and Ribosomal (J5)] in seed, root, and root collar, and to discriminate it from other pathogenic fungi [Fusarium Oxysporum formae speciales (FO f. sp.) and Ascocyhta rabiei]. Total RNAs were isolated, converted to cDNAs (limit of 5 ng/rxn.-0.05 pg/rxn.) and used as template for qPCR studies. The FOC was detected in plant samples starting from the first day after inoculation. The FOC was detected in root, root collar and seed samples and was differentiated by qPCR assay from other pathogenic fungi. Melting curves, in which no primer dimers and non-specific complementation were observed, presented a single peak. Quantification was successfully performed using specific H3 and J5 primer pairs (P< 0.05), and the FOC was distinguished from other pathogenic fungi with J5 primer (P< 0.05). The results of these studies may support the development of new biochemical and molecular methods that allow direct, faster and more accurate determination of pathogens. Thus, it will also enable us to reduce the losses caused by diseases and the costs of DM.

Keywords

Subjects


1. Abbo, S., Berger, J., and Turner, N. C. 2003. Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct. Plant Biol., 30(10): 1081−1087.
2. Akveç, O., Demirel, Ö., Kafadar, F. N., and Can, C. 2018. Determination of Didymella rabiei as quantitatively in infected chickpea plants. International Congress on Vocational & Technical Sciences-III, Oral Presentation-Abstract book, Gaziantep, Turkey, 989−990. https://www.umteb.org/congress-books.
3. Altınok, H. H., Tanyolaç, M. B., Ateş, D., Can, C., and Özkılınç, H. 2019. Molecular phylogeny of Fusarıum oxysporum species complex isolated from eggplant and pepper in Turkey. Agrofor., 4(3): 91−99.
4. Altinok, H. H., Can, C., and Altinok, M. A. 2018. Characterization of Fusarium oxysporum f. sp. melongenae isolates from Turkey with ISSR markers and DNA sequence analyses. Eur. J. Plant Pathol., 150(3): 609−621.
5. Ates, D., Altinok, H. H., Ozkuru, E., Ferik, F., Erdogmus, S., Can, C., and Tanyolac, M. B. 2019. Population structure and linkage disequilibrium in a large collection of Fusarium oxysporum strains analysed through IPBS markers. J. Phytopathol., 167(10): 576−590.
6. Başbağcı, G., and Dolar, F. S. 2020. Determination of virulence grades of Fusarium spp. isolates causes wilt and root rot in Chickpea in-vitro conditions. J. Turk. Phytopath., 49(2): 35−39.
7. Bradford, W. D., Cahoon, L., Freel, S. R., Hoopes, L. L. M., and Eckdahl, T. T. 2005. An inexpensive gel electrophoresis-based polymerase chain reaction method for quantifying mRNA levels. Cell Biol. Educ., 4(2): 157−168.
8. Castro, P., Pistón, F., Madrid, E., Millan, T., Gil, J., and Rubio, J. 2010. Development of chickpea near-isogenic lines for Fusarium wilt. Theor. Appl. Genet., 121(8): 1519−1526.
9. Çolak, A., and Bicici, M. 2013. PCR detection of Fusarium oxysporum f. sp. radicis-lycopersici and races of F. oxysporum f. sp. lycopersici of tomato in protected tomato-growing areas of the eastern Mediterranean region of Turkey. Turk. J. Agric. For., 37(4): 457−467.
10. de Sousa, M. V., Machado, J. D. C., Simmons, H. E., and Munkvold, G. P. 2015. Real‐time quantitative PCR assays for the rapid detection and quantification of Fusarium oxysporum f. sp. phaseoli in Phaseolus vulgaris (common bean) seeds. Plant Pathol., 64(2): 478−488.
11. Demirel, Ö. 2019. Detection of Fusarium oxysporum f. sp. ciceris from chickpea with RT-PCR. Dissertation, University of Gaziantep, Gaziantep, Turkey.
12. Demirel, Ö., Akveç, O., and Can, C. 2022. A current overview of plant biotechnology, Euroasiajournal., 9(20): 110−149.
13. Demirel, Ö., Kafadar, F. N., Kocalar, H., Akveç, O., and Can, C. 2019. Pathogenic variations of Fusarium oxysporum f. sp. ciceris. 1st International Congress On Sustainable Agriculture and Technology, OralPresentation-Full text book, Gaziantep University, Gaziantep, Turkey, 58−71.
14. Desai, S., Prasad, R. D., and Kumar, G. P. 2019. Fusarium wilts of chickpea, pigeon pea and lentil and their management. In: Singh D. P., & Prabha R. (Eds). Microbial Interventions in Agriculture and Environment. 3th ed., pp. 49−68. Springer., Singapore.
15. Fraga, D., Meulia, T., and Fenster, S. 2014. Real‐time PCR. Curr. Protoc. Essent. Lab. Tech., 8(1): 10−3.
16. Giri, V. P., Shukla, P., Tripathi, A., Verma, P., Kumar, N., Pandey, S., Dimkpa, C. O., and Mishra, A. 2023. A review of sustainable use of biogenic nanoscale agro-materials to enhance stress tolerance and nutritional value of plants. Plants., 12(4), 815.
17. Haegi, A., Catalano, V., Luongo, L., Vitale, S., Scotton, M., Ficcadenti, N., and Belisario, A. 2013. A newly developed real-time PCR assay for detection and quantification of Fusarium oxysporum and its use in compatible and incompatible interactions with grafted melon genotypes. Phytopathology., 103(8): 802−810.
18. Hubballi, M., Johnson, I., Anjali, V. A., Archana, T. S., and Nakkeeran, S. 2022. Detection and identification of soil-borne pathogens: classical to recent updates. In: Singh, U. B., Sahu, P. K., Singh, H. V., Sharma, P. K., & Sharma, S. K. (Eds.), Rhizosphere microbes: biotic stress management, pp. 1−45. Springer Nature, Singapore.
19. IBM, 2013. United States Software Announcement. IBM-SPSS [Computer Program] Armonk NI-SI, NY, USA, Version:22, 213−309.
20. Jendoubi, W., Bouhadida, M., Boukteb, A., Béji, M., and Kharrat, M. 2017. Fusarium wilt affecting chickpea crop. Agriculture., 7(3): 23.
21. Jeong, R. D., Lim, W. S., Kwon, S. W., and Kim, K. H. 2005. Identification of Glycine max genes expressed in response to Soybean mosaic virus infection. Plant Pathol., 21(1): 47−54.
22. Kafadar, F. N., Özkan, A., Can, C., Kar, Y., Mart, D., and Ceyhan, E. 2019. Genetic and biochemical properties of Cicer spp. reveal distinction between wild and cultivated chickpea genotypes. Legum. Res., 42(1): 1−9.
23. Kocalar, H., Kafadar, F. N., Ozkan, A., Talapov, T., Demirel, O., Anay, A., Mart, D., and Can, C. 2020. Current distribution and virulence of Fusarium oxysporum f. sp. ciceris in Turkey. Legum. Res., 43(5): 735−741.
24. Kumar, A., Lal, H. C., and Akhtar, J. 2012. Morphological and pathogenic characterization of Fusarium oxysporum f. sp. ciceri causing wilt of chickpea. Indian Phytopath., 65(1): 64−66.
25. Kumar, S. 2021. Molecular taxonomy, diversity, and potential applications of genus Fusarium. In: Abdel-Azeem A. M., Yadav A. N., Yadav N., & Sharma M. (Eds.), Industrially Important Fungi for Sustainable Development, 1th ed., pp. 277−293. Springer., Cham.
26. Ladizinsky, G. 1975. A new Cicer from Turkey. Notes Roy. Bot. Gard., 34: 201−202.
27. Lees, A. K., Cullen, D. W., Sullivan, L., and Nicolson, M. J. 2002. Development of conventional and quantitative real‐time PCR assays for the detection and identification of Rhizoctonia solani AG‐3 in potato and soil. Plant Pathol., 51(3): 293−302.
28. Lev-Yadun, S., Gopher, A., and Abbo, S. 2000. The cradle of agriculture. Sci., 288(5471): 1602−1603.
29. Mahboudi, H., Heidari, N. M., Rashidabadi, Z. I., Anbarestani, A. H., Karimi, S., and Darestani, K. D. 2018. Prospect and competence of quantitative methods via real-time PCR in a comparative manner: an experimental review of current methods. The Open Bioinform. J., 11(1): 1−11.
30. Mart, D. 2022. Chickpea (Cicer arietinum L.): a current review. MAS J. Appl. Sci., 7(2), 372−379.
31. Michielse, C. B., and Rep, M. 2009. Pathogen profile update: Fusarium oxysporum. Mol. Plant Pathol., 10(3): 311−324.
32. Mirmajlessi, S. M., Loit, E., Maend, M., and Mansouripour, S. M. 2015. Real-time PCR applied to study on plant pathogens: potential applications in diagnosis: a review. Plant Prot. Sci., 51(4): 177−190.
33. Naroei, K., and Salari, M. 2015. Reliable detection of the fungal pathogen, molecular detection and identification Fusarium oxysporum. Biol. Forum., 7(2): 473−492.
34. Polatbilek, H., Akveç, O., Kafadar, F. N., Mart, D., and Can, C. 2017. Towards determining Didymella rabiei from infected chickpea seeds with RT-PCR analyses. International DNA Day and Genome Congress, Poster Presentation (IDDGC17-PP- 154) - Abstract book, Kırşehir, Turkey, 174. https://docplayer.net/55979278-International-dna-day-and-genome-congress-2017-iddgc-17-abstract-book-april-24-28-2017-ahi-evran-university-kirsehir-turkey.html.
35. Pollard, A. T., and Okubara, P. A. 2019. Real-time PCR quantification of Fusarium avenaceum in soil and seeds. J. Microbiol. Methods, 157: 21−30.
36. Priyadarshini, P., Kohli, D., Yadav, S., Srinivasa, N., Bharadwaj, C., Anjoy, P., Gaikwad, K., and Jain, P. K. 2021. Quantitative detection of pathogen load of Fusarium oxysporum f. sp. ciceris infected wilt resistant and susceptible genotypes of chickpea using intergenic spacer region-based marker. Physiol. and Mol. Plant Patho., 114: 101622.
37. Priyadarshini, P., Sahu, S., Kalwan, G., Yadava, Y. K., Nagar, R., Rai, V., Bharadwaj, C., Gaikwad, K., and Jain, P. K. 2023. Unravelling the mechanism of Fusarium wilt resistance in chickpea seedlings using biochemical studies and expression analysis of NBS-LRR and WRKY genes. Physiol. and Mol. Plant Patho., 124: 101958.
38. Priyanka, K., Dubey, S. C., and Upadhyay, B. K. 2021. Cloning, characterization and expression analysis of resistant gene analogues for wilt resistant in chickpea. Indian Phytopath., 74(3): 1−10.
39. Rieu, I., and Powers, S. J. 2009. Real-time quantitative RT-PCR: design, calculations, and statistics. Plant Cell., 21(4): 1031−1033.
40. Sahgal, M. 2022. Fungal enzymes in biocontrol of phytopathogens. In: Satyanarayana, T., Deshmukh, S. K., & Deshpande, M. V. (Eds.), Progress in mycology: biology and biotechnological applications, pp. 327−356. Springer Nature, Singapore.
41. Schena, L., Nigro, F., Ippolito, A., and Gallitelli, D. 2004. Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. European J. Plant Pathol., 110(9): 893−908.
42. Scortichini, M. 2022. Sustainable management of diseases in horticulture: conventional and new options. Hortic., 8, 517.
43. Sharma, D., Gupta, S., Gupta, M., and Summuna, B. 2020. Exploration of secondary metabolites for management of chickpea diseases. Manag. of Fungal Pathog. in Pulses: Curr. Status and Future Chall., 15−33.
44. Singh, C., and Vyas, D. 2021. The trends in the evaluation of fusarium wilt of chickpea. In: Kurouski, D. (Eds.), Diagnostics of plant diseases. pp 115−130. IntechOpen., London, UK.
45. Singh, R. N., Krishnan, P., Bharadwaj, C., and Das, B. 2023. Improving prediction of chickpea wilt severity using machine learning coupled with model combination techniques under field conditions. Ecol. Inform., 73, 101933.
46. Taylor, S. C., Nadeau, K., Abbasi, M., Lachance, C., Nguyen, M., and Fenrich, J. 2019. The ultimate qPCR experiment: producing publication quality, reproducible data the first time. Trends Biotechnol., 37(7): 761−774.
47. Tekeoğlu, M., Özkılınç, H., Tunalı, B., Küsmenoğlu, İ., and Chen, W. 2017. Molecular identification of Fusarium spp. causing wilt of chickpea and the first report of Fusarium redolens in Turkey. Mediterr. Agric. Sci., 30(1): 27−33.
48. Thatcher, T. H., MacGaffey, J., Bowen, J., Horowitz, S., Shapiro, D. L., and Gorovsky, M. A. 1994. Independent evolutionary origin of histone H3.3-like variants of animals and Tetrahymena. Nucleic Acids Res., 22(2): 180−186.
49. Williams, A. H., Sharma, M., Thatcher, L. F., Azam, S., Hane, J. K., Sperschneider, J., Kidd, B. N., Anderson, J. P., Ghosh, R., Garg, G., Lichtenzveig, J., Kistler, H. C., Shea, T., Young, S., Buck, S. A. G., Kamphuis, L. G., Saxena, R., Pande, S., Ma, L. J., Varshney, R. K., and Singh, K. B. 2016. Comparative genomics and prediction of conditionally dispensable sequences in legumen-infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors. BMC Genomics., 17(1): 1−24.
50. Zhu, Z. X., Zheng, L., Hsiang, T., Yang, G. L., Zhao, D. L., Lv, B., Chen, Y. F., and Huang, J. B. 2016. Detection and quantification of Fusarium commune in host tissue and infested soil using Real‐time PCR. Plant Pathol., 65(2): 218−226.