Effects of NaCl and Alkaline pH Stress on Some Morphophysiological and Biochemical Parameters of Two Citrus Rootstocks

Document Type : Original Research

Authors
1 Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran.
2 Department of Plant Production Engineering and Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran.
Abstract
Citrus is one of the most important fruits whose growth performance and production is significantly affected by environmental stresses. Abiotic stresses, such as salinity and alkaline pH, strikingly limit citrus growth and development. The aim of the present study was to investigate the effect of four NaCl concentrations (0, 30, 60, 90 mM) and two pH levels (6.5 and 8.2) on some of morphological, physiological, and biochemical parameters of two citrus rootstocks (Sour orange and Bakraei rootstocks). The experiment was conducted as factorial based on a completely randomized design with four replications, at the Faculty of Agriculture, Shahid Chamran University of Ahvaz, Iran. The results showed that the value of shoot dry weight, fresh and dry weight of roots, and transpiration were significantly decreased in both Bakraei and Sour orange rootstocks when receiving irrigation with 90 mM supplement of salinity at pH= 8.2. Proline and carbohydrates of citrus rootstocks were considerably increased by increasing the levels of salinity (90 mM NaCl) and alkaline stress (pH= 8.2) in each rootstock, at which condition the photosynthesis rate of Sour orange and Bakraei also declined by 34.77 and 50.80%, respectively. The activity of antioxidant enzymes such as peroxidase, catalase, and superoxide dismutase were increased by 57.42, 42.10, and 45.86% in Sour orange rootstock and 42.04, 26.78, and 37.92% in Bakraei rootstock, respectively. Overall, it can be concluded that the growth performance of Sour orange rootstock is more suitable than Bakraei to tolerate salt-alkali conditions.

Keywords

Subjects


Apel, K., Hirt, H., 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701.
Bañuls, J., Primo-Millo, E., 1992. Effect of chloride and sodium on gas exchange parameters and water of Citrus plants. Physiol. Plant. 86-115 123. https://doi.org/10.1016/S0176-1617(97)80202-7.
Bates, L. S., Waldaren, R. P., Teare, I. D., 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39, 205-208. https://doi.org/10.1007/BF00018060.
Beers, R. F., Sizer, I. W., 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol chem, 195, 133-140. https://doi.org/10.1016/S0021-9258(19)50881-X
Boman, B.J., 1993. First-year response of ‘Ruby Red’ grapefruit on four rootstocks to fertilization and salinity. Proceeding of the Florida-State Horticultural Society.106, 12-18.
Boukari, N., Jelali, N., Renaud, J. B., Youssef, R. B., Abdelly, C., Hannoufa, A., 2019. Salicylic acid seed priming improves tolerance to salinity, iron deficiency and their combined effect in two ecotypes of Alfalfa. Environ. Exp. Bot. 167, 1-12. http://dx.doi.org/10.1016/j.envexpbot.2019.103820
Cimen, B., Yesiloglu, T., 2016. Rootstock breeding for abiotic stress tolerance in citrus. In Abiotic and Biotic Stress in Plants-Recent Advances and Future Perspectives. IntechOpen.
Dhindsa, R. S., Plumb-Dhindsa, P. A. M. E. L. A., Thorpe, T. A., 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93-101. https://doi.org/10.1093/jxb/32.1.93.
Fang, S., Hou, X., Liang, X., 2021. Response Mechanisms of Plants Under Saline-Alkali Stress. Front. Recent Dev. Plant Sci. 12, 1-20. https://doi.org/10.3389/fpls.2021.667458.
Ghasemi, S., Khoshgoftarmanesh, A. H., Afyuni, M., Hadadzadeh, H., 2014. Iron (II)–amino acid chelates alleviate salt-stress induced oxidative damages on tomato grown in nutrient solution culture. Sci. Hortic. 165, 91-98. https://doi.org/10.1016/j.scienta.2013.10.037.
Golbashy, M., Ebrahimi, M., Khorasani, S. K., Choukan, R., 2010. Evaluation of drought tolerance of some corn (Zea mays L.) hybrids in Iran. Afr. J. Agric. Res. 5, 2714-2719. https://doi.org/10.14207/ejsd.2012.v1i3p543.
Hassan, F., Ali, E., 2014. Effects of salt stress on growth, antioxidant enzyme activity and some other physiological parameters in jojoba ['Simmondsia chinensis'(link) schneider] plant. Aust. J. Crop Sci. 8, 1615-1624.
Heath R.L., Parker, L., 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. 125, 189–198. https://doi.org/ 10.1016/0003-9861(68)90654-1.
Hemeda, H. M., Klein, B. P., 1990. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J. Food Sci. 55, 184-185. https://doi.org/10.1111/j.1365-2621.1990.tb06048.x
Irigoyen, J. J., Einerich, D. W., SánchezDíaz, M., 1992. Water stress-induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant. 84, 55-60. https://doi.org/10.1111/j.1399-3054.1992.tb08764.x.
Kelley, W.P., Thomas, E. E., 1920. The Effects Of Alkali On Citrus Trees. Bulletin No. 318. Berkeley University, California. USA.
Khoshbakht, D., Ramin, A. A., Baninasab, B., 2014. Citrus rootstocks response to salinity: Physio-biochemical parameters changes. Res. J. Environ. Sci. 8, 29-38. https://doi.org/ 10.3923/rjes.2014.29.38.
Lichtenthaler, H. K., 1987. ChloropHylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1.
Lin, J., Wang, Y., Sun, S., Mu, C., Yan, X., 2017. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci. Total Environ. 576, 234-241. https://doi.org/10.1016/j.scitotenv.2016.10.091.
Loreto, F., Velikova, V., 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 127, 1781-1787. https://doi.org/10.1104/pp.010497.
Maas, E.V., 1993. Salinity and citriculture. Tree Physiol. 12 (2) , 195-216. https://doi.org/10.1093/treephys/12.2.195.
Mafakheri, A., Siosemardeh, A. F., Bahramnejad, B., Struik, P. C., Sohrabi, Y., 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust. J. Crop Sci. 4, 580-585.
Manzari, T. M., Roosta, H. R., Hamidpour, M., 2016. Effects of Alkali Stress and Growing Media on Growth and Physiological Characteristics of Gerbera Plants. J. Agr. Sci. Tech. 18, 453-466. https://doi.org/ 20.1001.1.16807073.2016.18.2.12.2.
M'barek, B. N., Raoudha, A., Leila, B. K., 2007. Relationship between peroxidase activity and salt tolerance during barley seed germination. J. Agron. 6, 433-438. https://doi.org/ 10.3923/ja.2007.433.438.
Nakano, Y., Asada, K., 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232.
Naliwajski, M., Skłodowska, M., 2021. The relationship between the antioxidant system and proline metabolism in the leaves of cucumber plants acclimated to salt stress. Cells, 10, 2-15. https://doi.org/10.3390/cells10030609.
Pedroso, F. K., Prudente, D. A., Bueno, A. C. R., Machado, E. C., Ribeiro, R. V., 2014. Drought tolerance in citrus trees is enhanced by rootstock-dependent changes in root growth and carbohydrate availability. Environ. Exp. Bot. 101, 26-35. https://doi.org/ 10.1016/J.ENVEXPBOT.2013.12.024.
Porra, R. J., 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Trends Photosynth. Res. 73, 149-156. https://doi.org/ 10.1023/A:1020470224740.
Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Sarwar, M. I., 2019. A review: Impact of salinity on plant growth. Nat. Sci, 17, 34-40. https://doi.org/10.7537/marsnsj170119.06.
Sarker, U., Oba, S., 2020. The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Front. Plant Sci. 11, 1-14. https://doi.org/10.3389/fpls.2020.559876.
Shafiei, N., Khaleghi, E., Moallemi, N., 2019. Effect of salicylic acid on some morphological and physiological characteristics of olive cv. ‘Konservalia’ under water deficit condition. Iranian Journal of Horticultural Science, 49(4), 881-890. https://doi.org/ 10.22059/ijhs.2017.232268.1240.
Shafieizargar, A., Awang, Y., Ajamgard, F., Juraimi, A. S., Othman, R., Ahmadi, A. K., 2015. Assessing five citrus rootstocks for NaCl salinity tolerance using mineral concentrations, proline and relative water contents as indicators. Asian J. Plant Sci.14, 20-26. https://doi.org/10.3923/ajps.2015.20.26.
• Shahid, M. A., Balal, R. M., Khan, N., Simón-Grao, S., Alfosea-Simón, M., Cámara-Zapata, J. M., Garcia-Sanchez, F., 2019. Rootstocks influence the salt tolerance of Kinnow mandarin trees by altering the antioxidant defense system, osmolyte concentration, and toxic ion accumulation. Sci. Hortic. 250, 1-11. https://doi.org/10.1016/j.scienta.2019.02.028.
Singh, A., Prakash, J., Srivastav, M., Singh, S. K., Awasthi, O. P., Singh, A. K., Sharma, D. K., 2014. Physiological and biochemical responses of citrus rootstocks under salinity stress. Indian J. Hortic. 71: 162-167.
Soltabayeva, A., Ongaltay, A., Omondi, J. O., Srivastava, S., 2021. Morphological, Physiological and Molecular Markers for Salt-Stressed Plants. Plants, 10, 1-18. https://doi.org/10.3390/plants10020243.
Stoop, J. M., Pharr, D. M., 1994. Growth substrate and nutrient salt environment alter mannitol-to-hexose partitioning in celery petioles. J. Am. Soc. Hortic. Sci.119, 237-242. https://doi.org/10.21273/JASHS.119.2.237.
Syvertsen, J. P., Yelenosky, G., 1988. Salinity can enhance freeze tolerance of citrus rootstock seedlings by modifying growth, water relations, and mineral nutrition. J.Am.Soc.Hortic.Sci. 113 (6), 889-893.
Tabatabaei, S. J., 2006. Effects of salinity and N on the growth, photosynthesis and N status of olive (Olea europaea L.) trees. Sci. Hortic. 108, 432-438. https://doi.org/10.1016/j.scienta.2006.02.016.
Taïbi, K., Taïbi, F., Abderrahim, L. A., Ennajah, A., Belkhodja, M., Mulet, J. M., 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S. Afr. J. Bot. 105, 306-312. https://doi.org/10.1016/j.sajb.2016.03.011.
Wang, X.-S., Ren, H.-L., Wei, Z.-W., Wang, Y.-W., Ren, W. B., 2017. Effects of neutral salt and alkali on ion distributions in the roots, shoots, and leaves of two alfalfa cultivars with differing degrees of salt tolerance. J. Integr. Agric. 16, 1800–1807. https://doi.org/10.1016/S2095-3119(16)61522-8.
Ye, L., Zhao, X., Bao, E., Cao, K., Zou, Z., 2019. Effects of arbuscular mycorrhizal fungi on watermelon growth, elemental uptake, antioxidant, and photosystem II activities and stress-response gene expressions under salinity-alkalinity stresses. Front. Plant Sci. 10, 1-12. https://doi.org/10.3389/fpls.2019.00863.
Zarei, M., Paymaneh, Z., 2014. Effect of salinity and arbuscular mycorrhizal fungi on growth and some physiological parameters of Citrus jambheri. Arch. Agron. Soil Sci. 60, 993-1004. https://doi.org/10.1080/03650340.2013.853289.
Zekri, M., Parsons, L.R, 1992. Salinity tolerance of citrus rootstocks: effect of salt on root and leaf mineral concentrations. Plant Soil. 147 (2), 171-181
Zhang, H., Liu, X. L., Zhang, R. X., Yuan, H. Y., Wang, M. M., Yang, H. Y., Liang, Z. W., 2017. Root damage under alkaline stress is associated with reactive oxygen species accumulation in rice (Oryza sativa L.). Front. Recent Dev. Plant Sci. 8, 1-12. https://doi.org/10.3389/fpls.2017.01580.
Zhang, M., Fang, Y., Ji, Y., Jiang, Z., Wang, L., 2013. Effects of salt stress on ion content, antioxidant enzymes and protein profile in different tissues of Broussonetia papyrifera. S. Afr. J. Bot. 85, 1-9. https://doi.org/10.1016/j.sajb.2012.11.005.