Effects of Mycorrhiza on Plant Nutrition, Enzyme Activities, and Lipid Peroxidation in Pepper Grown Under Salinity Stress

Document Type : Original Research

Authors
1 Department of Horticulture, Faculty of Agriculture, Kırşehir Ahi Evran University, Kırşehir, Turkey.
2 Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Mustafa Kemal University, Hatay, Turkey.
3 Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
Abstract
This study was conducted to determine whether Arbuscular Mycorrhizal Fungi (AMF) [ROOTS-novozymes endo-mycorrhiza fungus (Glomus spp.)] increase salt stress tolerance. The effects of mycorrhiza inoculation and salt on root and stem development, mineral nutrition, enzyme activity and lipid peroxidation levels in pepper (Capsicum annuum L.) plant was investigated. These effects were explored in pepper plants grown under greenhouse conditions in a randomized block design. Four different doses of salt (0, 50, 100 and 150 mM NaCl) were applied to the soil-filled pots, in addition to two different doses of mycorrhiza (0 and 100 spore mycorrhiza plant-1). It was found that the root and stem dry weights of pepper plants were greatly reduced in the non-mycorrhiza treatments, whereas the presence of mycorrhiza ameliorated these negative effects. N, P, K, Ca, Mg, S, Fe, Mn, Zn and Cu contents of AMF treated pepper were higher than non-mycorrhizal plants. Owing to the presence of AMF colonization, nutrient uptake was increased and, consequently, the nutrient contents of stem and root tissues of mycorrhizal inoculated plants were enhanced as well. On the other hand, the root and stem enzyme activity of plants increased with salinity. AMF inoculation decreased SOD, CAT, POD and AxPOD enzymes of plant and the MDA and H2O2 contents, indicating lower oxidative damage in the inoculated plants. Our results showed that AMF can contribute to protect plants against salinity by alleviating the salt induced oxidative stress and arranging the ion balance in plant via increasing nutrient uptake in saline soils.

Keywords

Subjects


1. Acosta-Motos, J., Ortuño, M., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M., and Hernandez, J. 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy, 7: 18. doi: 10.3390/agronomy7010018
2. Ahanger, M. A., Hashem, A., Abd_Allah, E. F., and Ahmad, P. 2014. “Arbuscular mycorrhiza in crop improvement under environmental stress,” in Emerging Technologies and Management of Crop Stress Tolerance, Vol. 2, eds P. Ahmad and S. Rasool (San Diego, CA: Academic Press; Elsevier), 69–95. doi: 10.1016/B978-0-12-800875-1.00003-X
3. Alguacil M. M., Hernandez J. A., Caravaca F., Portillo B., Roldan A. 2003. Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiol. Plant. 118: 562–570. doi: 10.1034/j.1399-3054.2003.00149.x.
4. Augé R. M., Toler, H. D., Saxton, A. M. 2014. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis. Front. Plant. Sci., 5: 562. doi: 10.3389/fpls.2014.00562
5. Barman, J., Samanta, A., Saha, B. and Datta, S., 2016. Mycorrhiza: The oldest association between plant and fungi. Resonance, 21: 12, 1093−1104.
6. Blilou, I., Bueno, P., Ocampo, J.A., and García-Garrido, J.M. 2000. Induction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae. Mycol. Res. 104: 722–725.
7. Bouyoucos, G. J. 1951. A. recablibration of the hydrometer method for making mechanical analysis of the soil. Agron. J., 43: 434-438. doi:10.2134/agronj1951.000219.
8. Bremner, J. M. 1965. Total Nitrojen. In C.A. Black et al. (ed), Methods of Soil Analysis, Part 2, Agronomy. Am. Soc. of Agron. Inc. Madison, Wisconsin, USA, 1149-1178 p.
9. Daei, G. 2009. Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J. Plant. Physiol., 166: 617-625. doi:10.1016/j.jplph.2008.09.013.
10. Dhalaria, R., Kumar, D., Kumar, H., Nepovimova, E., Kuˇca, K., Torequl Islam, M., Verma, R. 2020. Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants. Agronomy, 10: 815. doi: 10.3390/agronomy10060815
11. Evelin, H., Giri, B. and Kapoor, R. 2012. Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed. Trigonella foenum-graecum. Mycorrhiza, 22: 203–217. doi: 10.1007/s00572-011-0392-0
12. Ghorbanli, M., Ebrahimzadeh, H. and Sharifi, M. 2004. Effects of NaCl and mycorrhizal fungi on antioxidative enzymes in soybean. Bio. Plant., 48: 575–581. doi: 10.1023/B:BIOP.0000047157. 49910.69
13. Gossett, D. R., Milhollon, E. P. and Lucas, M. C. 1994. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivar of cotton. Crop Sci., 34: 706–714. doi: 10.2135/cropsci 1994.0011183X0.
14. Hajiboland, R., Aliasgharzadeh, N., Laiegh, S. F., Poschenrieder, C. 2010. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil., 331: 313–327. doi: 10.1007/s11104-009-0255-z.
15. Heath, R. L. and Packer, L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem Biophys., 125: 189-198. doi: 10.1016/0003-9861(68)90654-1.
16. Jackson, M. 1958. Soil Chemical Analysis. Prentice-Hall Inc., Englewood Cliffs, New Jersey, USA, 498 p.
17. Kacar, B. and İnal, A. 2008. Plant Analysis. Nobel Puplications, Ankara, 891 p.
18. Knudsen, D., Peterson, G. A. and Pratt, P. F. 1983. Lithium, Sodium and Potassium. Methods of soil analysis, Part 2. Chem. Microbiol. Prop., 9: 225–246. doi: 10.2134/agronmonogr9.2.2ed.c13
19. Li, J., Meng, B., Chai, H., Yang, X., Song, W., Li, S., Lu, A., Zhang, T. Sun, W. 2019. Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Front. Plant Sci., 10: 499. doi: 10.3389/fpls.2019.00499
20. Lindsay, W. L. and Norvell, W. A. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J., 42: 421-428. doi:10.2136/sssaj1978.036159950042 00030009x.
21. Mirzaei J, Moradi M. 2016. Single and Dual Arbuscular Mycorrhiza Fungi Inoculum Effects on Growth, Nutrient Absorption and Antioxidant Enzyme Activity in Ziziphus spina-christi Seedlings under Salinity Stress. JAST 18 (7): 1845-1857. URL: http://jast.modares.ac.ir/article-23-3724-en.html
22. Munns, R. and Tester, M. 2008. Mechanism of salinity tolerance. Annu. Rev. Plant Biol., 59: 651-681. doi:10.1146/annurev.arplant.59.032607.092911.
23. Olsen S. R., Cole, C. V., Watanabe, F. S. D., Dean, L. A. 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. United States Department of Agriculture, Washington, DC
24. Rai, V., Vaypayee P., Singh S. N., Mehrotra, S. 2004. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defence system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci., 167 (5): 1159-1169. doi: 10.1016/j.plant sci.2004.06.016
25. Ruiz-Lozano, J. M., Porcel, R., Azcón, C., and Aroca, R. 2012. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J. Exp. Bot., 63: 4033–4044. doi: 10.1093/jxb/ers126
26. Salam, E. A., Alatar, A., El-Sheikh, M. A. 2017. Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi J. Biol. Sci., 25 (8): 1772–1780. doi: 10.1016/j.sjbs.2017.10.015
27. Sallaku, G., Sandén, H., Babaj, I., Kaciu, S., Balliu, A., and Rewald, B. 2019. Specific nutrient absorption rates of transplanted cucumber seedlings are highly related to RGR and influenced by grafting method, AMF inoculation and salinity. Sci. Hortic., 243: 177–188. doi: 10.1016/j.scienta. 2018.08.027
28. Sairam, R. and Srivastava, G. 2002. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci., 162: 897-904. doi: 10.1016/S0168-9452(02)00037-7
29. Sheng, M., Tang, M., Zhang, F. and Huang, Y. 2011. Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza, 21: 423–430. doi: 10.1007/s00572-010-0353-z
30. Souza, M. C. G., Morais, M. B., Andrade, M. S., Vasconcelos, M. A., Sampaio, S. S. and Albuquerque, C. C. 2020. Mycorrhization and saline stress response in Hyptis suaveolens. Ciên. Rur., 50:e20190533.
31. Taban, S. and Katkat, A. V. 2000. Effect of salt stres on growth and mineral elements concentrations in shoots and roots of maize plants. Journal of Agricul. Sci., 6: 119-122.
32. Tedersoo, L., Bahram, M. and Zobel, M. 2020. How mycorrhizal associations drive plant population and community biology. Science, 21: 367(6480), 2020. doi: 10.1126/science.aba1223.
33. Turkstat 2021. Value of Pepper Production. 2020. Available form: https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2020-33737 (Accessed 2021 July 30)
34. Tuteja, N. 2007. Mechanisms of High Salinity Tolerance in Plants. Methods in Enzymology, 428: 419-438. Available from: https://doi.org/10.1016/S0076-6879(07)28024-3
35. Velikova, V., Yordanov, I. and Edreva, A. 2000. Oxidative stress and some antioxidant system in acid rain treated bean plants: protective role of exogenous polyammines. Plant Sci., 151: 59–66. doi: 10.1016/S0168-9452(99)00197-1
36. Wang, Y. H., Zhang, N. L., Wang, M. Q., He, X. B., Lv, Z. Q., Wei, J., Su, X., Wu, A. P., Li, Y. 2021. Sex-Specific Differences in the Physiological and Biochemical Performance of Arbuscular Mycorrhizal Fungi-Inoculated Mulberry Clones Under Salinity Stress. Front. Plant Sci., 18: 12, 614162. https://doi.org/10.3389/ fpls.2021. 614162
37. Willekens, H., Van Camp, W., Van Montagu, M., Inz´e, D., Langebartels, C. and Sandermann, H. 1994. Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L. Plant Physiol. 106: 1007–1014. doi: 10.1104/ pp.106.3.1007