Genomic Evaluation of Average Daily Gain Traits in a Mixture of Arian Line and Urmia Iranian Native Chickens

Document Type : Original Research

Authors
1 Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Islamic Republic of Iran.
2 Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), 31585 Karaj, Islamic Republic of Iran.
3 Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
Abstract
The aims of this investigation were to compare the accuracy and bias of prediction of Estimated Breeding Values (EBV) for Average Daily Gain (ADG) at 2-4 weeks old by employing pedigree-based BLUP and single-step Genomic BLUP (ssGBLUP) techniques. Additionally, the study aimed to identify the optimal minor allele frequencies (MAF) threshold for pre-selecting SNPs for genetic prediction. The present investigation utilized a total of 488 F2 broiler chickens, which were derived from the crossbreeding of fast-growing Arian chickens and slow-growing native chickens from Urmia, Iran. These chickens were between 2-4 weeks old at the time of the study. Samples were genotyped using the Illumina 60K chicken Beadchip. In order to examine the impact of MAF on prediction accuracy, a total of 48,379 quality-controlled SNPs were categorized into five subgroups based on their MAF values: 0.05-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, and 0.4-0.5. The findings substantiated the dominance of ssGBLUP over conventional BLUP techniques. The average accuracy of GP improved by 1.96, 3.87, and 2.12% using ssGBLUP compared to BLUP method for ADG at 2-4 weeks of age, respectively. Using a specific MAF bin and a subset of SNPs based on age group significantly enhanced the accuracy of genomic prediction for ADG traits. Current results highlighted that the pre-selection of SNPs based on allele frequency may provide a reasonable compromise between accuracy of results, number of independent variables to be considered and computing requirements.

Keywords

Subjects


1. Adeyinka, I. A., Oni, O. O., Nwagu, B. I., & Adeyinka, F. D. 2006. Genetic parameter estimates of body weights of naked neck broiler chickens. Int. J. Poult. Sci., 5(6): 589-592. https://doi.org/ 10.3923/ijps.2006.589.592
2. Bermann, M., Legarra, A., Hollifield, M. K., Masuda, Y., Lourenco, D., & Misztal, I. 2021. Validation of single‐step GBLUP genomic predictions from threshold models using the linear regression method: An application in chicken mortality. J. Anim. Breed. Genet., 138(1): 4-13. https://doi.org/ 10.1111/jbg.12507
3. Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience., 4(1): s13742-015. https://doi.org/ 10.1186/s13742-015-0047-8
4. Christensen, O. F., Madsen, P., Nielsen, B., Ostersen, T., & Su, G. 2012. Single-step methods for genomic evaluation in pigs. Anim., 6(10): 1565-1571. https://doi.org/ 10.1017/S1751731112000742
5. Clark, S. A., Hickey, J. M., & Van der Werf, J. H. 2011. Different models of genetic variation and their effect on genomic evaluation. Genet. Sel. Evol., 43(1): 1-9. https://doi.org/ 10.1186/1297-9686-43-18
6. Druet, T., Macleod, I. M., & Hayes, B. J. 2014. Toward genomic prediction from whole-genome sequence data: impact of sequencing design on genotype imputation and accuracy of predictions. Heredity., 112(1): 39-47. https://doi.org/ 10.1186/1297-9686-46-41
7. Gao, H., Christensen, O. F., Madsen, P., Nielsen, U. S., Zhang, Y., Lund, M. S., & Su, G. 2012. Comparison on genomic predictions using three GBLUP methods and two single-step blending methods in the Nordic Holstein population. Genet. Sel. Evol., 44(1): 1-8. https://doi.org/ 10.1186/1297-9686-44-8
8. Goddard, M. E., & Hayes, B. J. 2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat. Rev. Genet., 10(6): 381-391. https://doi.org/ 10.1038/nrg2575
9. Goddard, M.E. and Hayes, B.J. 2007. Genomic selection. J. Anim. Breed. Genet., 124(6): 323-330. https://doi.org/10.1111/j.1439-0388.2007.00702.x
10. Koivula, M., Strandén, I., Pösö, J., Aamand, G. P., & Mäntysaari, E. A. 2015. Single-step genomic evaluation using multitrait random regression model and test-day data. J. Dairy Sci., 98(4): 2775-2784. https://doi.org/ 10.3168/jds.2014-8975
11. Legarra, A., Aguilar, I., & Misztal, I. 2009. A relationship matrix including full pedigree and genomic information. J. Dairy Sci., 92(9): 4656-4663. https://doi.org/ 10.3168/jds.2009-2061
12. Li, B., Zhang, N., Wang, Y. G., George, A. W., Reverter, A., & Li, Y. 2018. Genomic prediction of breeding values using a subset of SNPs identified by three machine learning methods. Front. Genet., 9: 237. https://doi.org/ 10.3389/fgene.2018.00237
13. Li, X., Wang, S., Huang, J., Li, L., Zhang, Q., & Ding, X. 2014. Improving the accuracy of genomic prediction in Chinese Holstein cattle by using one-step blending. Genet. Sel. Evol., 46(1): 1-5. https://doi.org/ 10.1186/s12711-014-0066-4
14. Liu, R., Sun, Y., Zhao, G., Wang, H., Zheng, M., Li, P., ... & Wen, J. 2015. Identification of loci and genes for growth related traits from a genome-wide association study in a slow-× fast-growing broiler chicken cross. Genes Genomics., 37(10): 829-836. https://doi.org/ 10.1007/s13258-015-0314-1
15. Lourenco, D. A. L., Misztal, I., Tsuruta, S., Aguilar, I., Ezra, E., Ron, M., ... & Weller, J. I. 2014. Methods for genomic evaluation of a relatively small genotyped dairy population and effect of genotyped cow information in multiparity analyses. J. Dairy Sci., 97(3): 1742-1752. https://doi.org/ 10.3168/jds.2013-6916
16. Lourenco, D., Legarra, A., Tsuruta, S., Masuda, Y., Aguilar, I., & Misztal, I. 2020. Single-step genomic evaluations from theory to practice: using SNP chips and sequence data in BLUPF90. Genes., 11(7): 790. https://doi.org/ 10.3390/genes11070790
17. Luo, W., Luo, C., Wang, M., Guo, L., Chen, X., Li, Z., ... & Nie, Q. 2020. Genome diversity of Chinese indigenous chicken and the selective signatures in Chinese gamecock chicken. Sci. Rep., 10(1): 1-14. https://doi.org/ 10.1038/s41598-020-71421-z
18. MacLeod, I. M., Hayes, B. J., & Goddard, M. E. 2014. The effects of demography and long-term selection on the accuracy of genomic prediction with sequence data. Genetics., 198(4): 1671-1684. https://doi.org/ 10.1534/genetics.114.168344
19. Mebratie, W., Shirali, M., Madsen, P., Sapp, R. L., Hawken, R., & Jensen, J. 2017. The effect of selection and sex on genetic parameters of body weight at different ages in a commercial broiler chicken population. Livest Sci., 204: 78-87. https://doi.org/ 10.1016/j.livsci.2017.08.013
20. Meuwissen, T. H., Hayes, B. J., & Goddard, M. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics., 157(4): 1819-1829. https://doi.org/ 10.1093/genetics/157.4.1819
21. Meuwissen, T., & Goddard, M. 2010. Accurate prediction of genetic values for complex traits by whole-genome resequencing. Genetics., 185(2): 623-631. https://doi.org/ 10.1534/genetics.110.116590
22. Meuwissen, T., Hayes, B., & Goddard, M. 2016. Genomic selection: A paradigm shift in animal breeding. Anim. Front., 6(1): 6-14. https://doi.org/ 10.2527/af.2016-0002
23. Misztal, I., Aggrey, S. E., & Muir, W. M. 2013. Experiences with a single-step genome evaluation. Poult. Sci., 92(9): 2530-2534. https://doi.org/ 10.3382/ps.2012-02739
24. Misztal, I., Tsuruta, S., Lourenco, D., Aguilar, I., Legarra, A., and Vitezica, Z. 2014. Manual for BLUPF90 Family of Programs. Athens: University of Georgia.
25. Misztal, I., Tsuruta, S., Strabel, T., Auvray, B., Druet, T., and Lee, D. 2002. “BLUPF90 and related programs (BGF90),” in Proceedings of the 7th world Congress on Genetics Applied to Livestock Production., Montpellier, 743–744.
26. Mrode, R., Ojango, J. M., Okeyo, A. M., & Mwacharo, J. M. 2019. Genomic selection and use of molecular tools in breeding programs for indigenous and crossbred cattle in developing countries: Current status and future prospects. Front. Genet., 694. https://doi.org/ 10.3389/fgene.2018.00694
27. Ogawa, S., Matsuda, H., Taniguchi, Y., Watanabe, T., Nishimura, S., Sugimoto, Y., & Iwaisaki, H. 2014. Effects of single nucleotide polymorphism marker density on degree of genetic variance explained and genomic evaluation for carcass traits in Japanese Black beef cattle. BMC Genet., 15(1): 1-13. https://doi.org/ 10.1186/1471-2156-15-15
28. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., ... & Sham, P. C. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet., 81(3): 559-575. https://doi.org/ 10.1086/519795
29. R Core Team. 2013. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
30. Rolf, M. M., Taylor, J. F., Schnabel, R. D., McKay, S. D., McClure, M. C., Northcutt, S. L., ... & Weaber, R. L. 2010. Impact of reduced marker set estimation of genomic relationship matrices on genomic selection for feed efficiency in Angus cattle. BMC Genet., 11(1): 1-10. https://doi.org/ 10.1186/1471-2156-11-24
31. Salek Ardestani, S., Jafarikia, M., Sargolzaei, M., Sullivan, B., & Miar, Y. 2021. Genomic Prediction of Average Daily Gain, Back-Fat Thickness, and Loin Muscle Depth Using Different Genomic Tools in Canadian Swine Populations. Front. Genet., 12: 735. https://doi.org/ 10.3389/fgene.2021.665344
32. Salvian, M., Moreira, G. C. M., Reis, Â. P., Dauria, B. D., Pilonetto, F., Gervásio, I. C., ... & Mourão, G. B. 2020. Estimation of Breeding Values Using Different Densities of Snp to Inform Kinship in Broiler Chickens. https://doi.org/ 10.21203/rs.3.rs-32429/v1
33. Silva, R. M. O., Fragomeni, B. O., Lourenco, D. A. L., Magalhães, A. F. B., Irano, N., Carvalheiro, R., ... & Albuquerque, L. G. 2016. Accuracies of genomic prediction of feed efficiency traits using different prediction and validation methods in an experimental Nelore cattle population. J. Anim. Sci., 94(9): 3613-3623. https://doi.org/ 10.2527/jas.2016-0401
34. Simeone, R., Misztal, I., Aguilar, I., & Vitezica, Z. G. 2012. Evaluation of a multi‐line broiler chicken population using a single‐step genomic evaluation procedure. J. Anim. Breed. Genet., 129(1): 3-10. https://doi.org/ 10.1111/j.1439-0388.2011.00939.x
35. Song, H., Zhang, J., Jiang, Y., Gao, H., Tang, S., Mi, S., ... & Ding, X. 2017. Genomic prediction for growth and reproduction traits in pig using an admixed reference population. J. Anim. Sci., 95(8): 3415-3424. https://doi.org/ 10.2527/jas.2017.1656
36. Song, H., Zhang, J., Zhang, Q., & Ding, X. 2019. Using different single-step strategies to improve the efficiency of genomic prediction on body measurement traits in pig. Front. Genet., 9: 730. https://doi.org/ 10.3389/fgene.2018.00730
37. Su, G., Brøndum, R. F., Ma, P., Guldbrandtsen, B., Aamand, G. P., & Lund, M. S. 2012. Comparison of genomic predictions using medium-density (∼ 54,000) and high-density (∼ 777,000) single nucleotide polymorphism marker panels in Nordic Holstein and Red Dairy Cattle populations. J. Dairy Sci., 95(8): 4657-4665. https://doi.org/ 10.3168/jds.2012-5379
38. Sun, Y., Zhao, G., Liu, R., Zheng, M., Hu, Y., Wu, D., ... & Wen, J. 2013. The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study. BMC Genom., 14(1): 1-11. https://doi.org/ 10.1186/1471-2164-14-458
39. VanRaden, P. M. 2007. Efficient estimation of breeding values from dense genomic data. J. Dairy Sci., 90: 374-375.
40. VanRaden, P. M., Tooker, M. E., O’connell, J. R., Cole, J. B., & Bickhart, D. M. 2017. Selecting sequence variants to improve genomic predictions for dairy cattle. Genet. Sel. Evol., 49(1): 1-12. https://doi.org/ 10.1186/s12711-017-0307-4
41. VanRaden, P. M., Van Tassell, C. P., Wiggans, G. R., Sonstegard, T. S., Schnabel, R. D., Taylor, J. F., & Schenkel, F. S. 2009. Invited review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci., 92(1): 16-24. https://doi.org/ 10.3168/jds.2008-1514
42. Wang, D., Sun, Y., Stang, P., Berlin, J. A., Wilcox, M. A., & Li, Q. 2009, December. Comparison of methods for correcting population stratification in a genome-wide association study of rheumatoid arthritis: principal-component analysis versus multidimensional scaling. In BMC proc (Vol. 3, No. 7, pp. 1-6). BioMed Central. https://doi.org/ 10.1186/1753-6561-3-s7-s109
43. Wellmann, R., Preuß, S., Tholen, E., Heinkel, J., Wimmers, K., & Bennewitz, J. 2013. Genomic selection using low density marker panels with application to a sire line in pigs. Genet. Sel. Evol., 45(1): 1-11. https://doi.org/ 10.1186/1297-9686-45-28
44. Wimmer, V., Albrecht, T., Auinger, H. J., & Schön, C. C. 2012. synbreed: a framework for the analysis of genomic prediction data using R. Bioinformatics., 28(15): 2086-2087. https://doi.org/ 10.1093/bioinformatics/bts335
45. Yan, G., Qiao, R., Zhang, F., Xin, W., Xiao, S., Huang, T., ... & Huang, L. 2017. Imputation-based whole-genome sequence association study rediscovered the missing QTL for lumbar number in Sutai pigs. Sci. Rep., 7(1): 1-10. https://doi.org/ 10.1038/s41598-017-00729-0
46. Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. 2013. Genome-wide complex trait analysis (GCTA): methods, data analyses, and interpretations. In Genome-wide association studies and genomic prediction (pp. 215-236). Humana Press, Totowa, NJ. https://doi.org/ 10.1007/978-1-62703-447-0_9
47. Zhang, C., Kemp, R. A., Stothard, P., Wang, Z., Boddicker, N., Krivushin, K., ... & Plastow, G. 2018. Genomic evaluation of feed efficiency component traits in Duroc pigs using 80K, 650K and whole-genome sequence variants. Genet. Sel. Evol., 50(1): 1-13. https://doi.org/ 10.1186/s12711-018-0387-9