Forecasting Sugar Beet Production in Turkey Using the Box-Jenkins Method

Document Type : Original Research

Author
Department of Agricultural Economics, Faculty of Agriculture, Isparta University of Applied Sciences, 32260, Isparta, Türkiye.
Abstract
Turkey is a favourable country for sugar beet production due to its climate and soil composition, and it holds a significant position among the countries producing sugar beet. Therefore, in this study, an Autoregressive Integrated Moving Average (ARIMA) was used to project the sugar beet production values for Turkey over the next ten years. The most effective model structure [ARIMA (2, 1, 3)] was created for this purpose using data from 1925 to 2020. The years 2019 and 2020 were utilized as the model’s validation years. When the observed and expected sugar beet production values are compared, the data indicates that the predicted values are slightly lower than the actual ones. The results also show that by 2030, sugar beet production in Turkey would reach 20.5 million tons. This research may help policymakers plan for the storage, export, or import of sugar beets. Also, by using these data, resource waste can be avoided.

Keywords

Subjects


Akaike, H. 1974. A new look at the statistical model identification. IEEE Trans. Automat. Contr., 19(6): 716-723.
Akdag, M. and Yigit, V. 2016. Forecasting inflation with box-jenkins and artificial neural network models. Atatürk Üniv. İktisadi ve İdari Bilimler Derg., 30(2): 269-283.
Akgul, I. 2003. Zaman Serilerinin Analizi ve ARIMA Modelleri, Der Yayınları, İstanbul.
Ataseven, B. 2013. Forecasting by using artificial neural networks. Öneri Derg., 10(39): 101-115.
Badmus, M. A. and Adepeju, O. 2011. Forecasting cultivated areas and production of maize in Nigerian using ARIMA model. Asian J. Agric. Sci., 3(3): 171-176.
Biswas, R. and Bhattacharyya, B. 2013. ARIMA modeling to forecast area and production of rice in West Bengal. J. Crop Weed, 9(2): 26-31.
Biswas, B., Dhaliwal, L. K., Singh, S. P. and Sandhu, S. K. 2014. Forecasting wheat production using ARIMA model in Punjab. Int. J. Agric. Sci., 10(1): 158-161.
Box, G. E. P. and Jenkins, G. M. 1970. Time Series Analysis: Forecasting and Control. San Francisco, CA: Holden Day.
Celik, S. 2019. Modeling and estimation of potato production in Turkey with time series analysis. Int. J. Trend in Res., 6(5): 111-116.
Chen, P., Yuan, H. and Shu, X. 2008. Forecasting crime using the ARIMA model, 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, 627-630.
Debnath, M. K., Bera, K. and Mishra, P. 2013. Forecasting area, production and yield of cotton in India using ARIMA model. RRJoSST, 2(1): 16-20.
Elliott G., Rothenberg, T. J. and Stock, J. H. 1996. Efficient tests for an autoregressive unit root. Econometrica, 64: 813-836.
Esturk, O. 2018. An assessment on importance and future of the sugar industry in Turkey. Anatol. J. Econ. Business, 2(1): 67-81.
Food and Agriculture Organization (FAO). 2022. Agricultural production data. Retrieved July 16, 2022, from https://www.fao.org/faostat/en/#data/TCL.
Harlianingtyas, I., Salim, A., Hartatie, D. and Supriyadi, S. 2020. Forecasting sugarcane production in the Asembagus sugar factory. IOP Conf. Ser: Earth Environ. Sci., 411(1): 1-6.
Hossain, Md. M. and Abdulla, F. 2016. Forecasting potato production in Bangladesh by ARIMA model. JAS, 1(4): 191-198.
Iqbal, N., Bakhsh, K., Maqbool, A. and Ahmad, A. S. 2005. Use of the ARIMA model for forecasting wheat area and production in Pakistan. J. Agric. Soc. Sci., 1(2): 1813-2235.
Kaya, A. 2021. Sugar market and policies applied in Turkey. JAVStudies, 7(4): 429-437.
Khan, K, Khan, G., Shaikh, S. A., Lodhi, A. S. and Jilani, G. 2015. ARIMA modelling for forecasting of rice production: a case study of Pakistan. Lasbela Univ. J. Sci. Technol., 4: 117-120.
Kiran, B. 2014. Time Series Analysis. Lecture Notes, Istanbul University Distance Education Application and Research Center.
Kumar, M. and Hasija Rajendra, R. C. 2017. ARIMA modelling and forecasting of cotton productivity in India. Environment & Ecology, 35(1A): 224-228.
Lumley, T., Diehr, P., Emerson, S. and Chen, L. 2002. The importance of the normality assumption in large public health data sets. Annu. Rev. Public Health, 23:151-69.
Mishra, P., Ghazi Al Khatib, A. M., Sardar, I., Mohammed, J., Karakaya, K., Dash, A., Ray, M., Narsimhaiah, L. and Dubey, A., 2021. Modeling and forecasting of sugarcane production in India. Sugar Tech, 23(6): 1317-1324.
Nath, B., Singh Dhakre, D. and Bhattacharya, D. 2019. Forecasting wheat production in India: an ARIMA modelling approach. J. Pharmacogn. Phytochem., 8(1): 2158-2165.
Ng, S. and Perron, P. 2001. Lag length selection and the construction of unit root tests with good size and power. Econometrica, 69(6): 1519-1554.
Unsal, Y. 2022. Ürün raporu, şeker pancarı. Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü. No: 354, Ankara. Retrieved January 06, 2023, from https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20%C3%9Cr%C3%BCn%20Raporlar%C4%B1/2022%20%C3%9Cr%C3%BCn%20Raporlar%C4%B1/%C5%9Eeker%20Pancar%C4%B1%20%C3%9Cr%C3%BCn%20Raporu-TEPGE-354.pdf.
Paswan, S., Paul, A., Paul, A. and Noel, A. S. 2022. Time series prediction for sugarcane production in Bihar using ARIMA & ANN model. Pharma Innov., 11(4): 1947-1956.
Ramesh, D., Bhattacharyya, B. and Biswas, R. 2014. Forecasting of maize production in Andhra Pradesh by ARIMA modeling. Environment & Ecology, 32(4B): 1709-1713.
Sahinli, M. A. 2021. Predicting and analyzing of Turkish sugar price with ARCH, GARCH, EGARCH and ARIMA methods. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 21(3):703-712.
Senturk, O. 2020. Agricultural products market-Sugar beet 2020. Republic of Türkiye Ministry of Agriculture and Forestry, Agricultural Economic and Policy Development Institute (TEPGE). Retrieved July 16, 2022, from https://arastirma.tarimorman.gov.tr/tepge/Belgeler/Yay%C4%B1n%20Ar%C5%9Fivi/2017-2022%20Yay%C4%B1n%20Ar%C5%9Fivi/Yay%C4%B1nno328.pdf.
Sharma, P. K., Dwivedi, S., Ali, L. and Arora, R. K. 2018. Forecasting maize production in India using ARIMA model. AE, 5(1): 01-06.
Schwarz, G. 1978. Estimating the dimension of a model. Ann. Stat., 461-464.
Schwert, G. W. 1989. Tests for unit roots: a Monte Carlo investigation. J. Bus. Econ. Stat., 7:147-159.
TEPGE. 2021. Agricultural products market-Sugar beet. Republic of Türkiye Ministry of Agriculture and Forestry, Agricultural Economic and Policy Development Institute. Retrieved July 16, 2022, from https://arastirma.tarimorman.gov.tr/tepge/Menu/27/Tarim-Urunleri-Piyasalari.
Tinni Chaudhuri, T., Verma, P. and Khetan, M. 2020. Modeling and forecasting of rice production in some major states of India using ARIMA. IJRASET, 8(12): 749-757.
TURKSEKER. 2020. Sector report 2020. Retrieved July 16, 2022, from https://www.turkseker.gov.tr/?ModulID=8&MenuI D=36.
Turkish Statistical Institute (TSI). 2012. Statistical Indicators 1923-2011. Turkish Statistical Institute Printing Division, Ankara. Retrieved July 16, 2022, from https://teyit.fra1.cdn.digitaloceanspaces.com/wp-content/uploads/2019/11/istatistikgoster
geler.pdf.
Vishwajith K. P., Sahu, P. K., Dhekale, V. S. and Mishra, P. 2016. Modelling and forecasting sugarcane and sugar production in India. IJED, 12(1): 71-79.