Effect of Biofertilizers (rhizobacteria and mycorrhizal fungi) on Growth Characteristics of Zygophyllum eurypterum

Document Type : Original Research

Authors
1 . Department of Desert and Arid Land Management- Faculty of Desert Studies. Semnan University, Semnan, Islamic Republic of Iran.
2 Soil and Water Research Institute, Agricultural Extension and Education, Karaj, Islamic Republic of Iran.
3 Department of Desert and Arid Land Management- Faculty of Desert Studies. Semnan University, Semnan, Islamic Republic of Iran.
Abstract
Chemical fertilizers have a devastating impact on soil and the environment when used in seedling production and planting. Conversely, biofertilizers can enhance soil structure and fertility while mitigating the harmful effects of chemical fertilizers on the environment. This study aimed to identify an appropriate biofertilizer for Zygophyllum eurypterum, a species that is particularly amenable to arid area restoration. To this end, we conducted an experiments using six different biofertilizer treatments (Azotobacter chroococcum, Azospirillum lipoferum, Flavobacterium F-40, Bacillus megaterium, Pseudomonas fluorescens, and Rhizophagus irregularis) and fertilizer-free control in a completely randomized design by cultivation of the plants in the seedling bags with 15 replications. This was done in the spring of 2018, in the research farm of Semnan University. Vegetative growth parameters such as root length, fresh and dry weight of roots and shoots, number of leaves, shoot diameter, and total chlorophyll were measured three months after planting. The percentage of root colonization with mycorrhizal fungi was measured at three and six months of age of seedlings. In this context, the maximum length of root (33.40 cm) and shoot (18.20 cm), height (51.30 cm), weight of root (99.94 g) and shoot (473.90 g), number of leaves (58.00), shoot diameter (3.32 mm) and total chlorophyll (74.96) were observed in the treatment by Pseudomonas fluorescens. Symbiotic mycorrhizal fungi was confirmed and it increased root length and plant height. The percentage of root colonization increased over time. Root to shoot ratio was increased by application of Azospirillum lipoferum fertilizer. The results showed that the use of biofertilizers Pseudomonas fluorescens, Azospirillum lipoferum, and Rhizophagus irregularis can be recommended in the production of Zygophyllum eurypterum seedlings.

Keywords

Subjects


Abbas, R., Rasul, S., Aslam K., Baber, M., Shahid, M., Mubeen, F., Naqqash, T. 2019. Halotolerant PGPR: A hope for cultivation of saline soils. Journal of King Saud University-Science, 31(4): 1195-1201.
Adesemoye, A.O., Torbert, H.A., Kloepper, J. W. 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial ecology, 58(4): 921-929.
Ahmadloo, F., Tabari, M., Azadi, P., Hamidi, A. 2014. Effect of plant growth promoting rhizobacteria (PGPRs) and stratification on germination traits of CrataeguspseudoheterophyllaPojark. Seeds ScientiaHorticulturae, 172: 61-67.
AlAli, H.A., Khalifa, A., Al-Malki, M. 2021. Plant growth-promoting rhizobacteria from Ocimumbasilicum improve growth of Phaseolus vulgaris and Abelmoschusesculentus. South African Journal of Botany, 139: 200–209.
Al Habib, I. M., Sukamto, D. S., & Maharani, L. 2017. Potensi Mikroba Tanah Untuk Meningkatkan Pertumbuhan Dan Hasil Tanaman Cabai Rawit (Capsicum frutescens L.). Folium: Jurnal Ilmu Pertanian, 1(1): 28-36.
Alemu, F., Alemu, T. 2015. Pseudomonas fluorescens Isolates used as a plant growth promoter of Faba Bean (Viciafaba) in vitro as well as in vivo study in Ethiopia. American Journal of Life Sciences, 3(2):100-108.
Aseri, G.K., Jain, N., Panwar, J., Rao, A.V., Meghwal, P.R. 2008. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punicagranatum L.) in Indian Thar Desert. Scientiahorticulturae, 117(2):130-135.
Asghari, B., Mafakheri, S., & Rejali, F. 2021. Assessment of morphological, physiological, and biochemical characteristics of thymus kotschyanus bioss. And hohen under different bio and chemical fertilizers. Journal of Agricultural Science and Technology, 23(6), 1309-1325.
Ashraf, M.A., Asif, M., Zaheer, A., Malik, A., Ali, Q., Rasool, M. 2013. Plant growth promoting rhizobacteria and sustainable agriculture: a review. African Journal of Microbiology Research, 7(9): 704-709.
Bhardwaj, D., Ansari, M. W., Sahoo, R. K., Tuteja, N. 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial cell factories, 13, 1-10.
Bhattacharyya, P. N., & Jha, D. K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4), 1327-1350.
Borkar, S. G., 2015. Microbes as bio-fertilizers and their production technology. Woodhead Publishing India Pvt, Ltd. 780 pp.
Cappellari, L., Santoro, M.V., Reinoso, H., Travaglia, C., Giordano, W., Banchio, E. 2015. Anatomical, morphological, and phytochemical effects of inoculation with plant growth-promoting rhizobacteria on peppermint (Menthapiperita). Journal of Chemical Ecology, 41(2): 149-158.
Chenchouni, H., Mekahlia, M.N., Beddiar, A. 2020. Effect of inoculation with native and commercial arbuscularmycorrhizal fungi on growth and mycorrhizal colonization of olive (Oleaeuropaea L.). ScientiaHorticulturae, 261:108969.
Chu, S., Zhang, D., Zhi, Y., Wang, B., Chi, C. P., Zhang, D., Liu, Y., Zhou, P. 2018. Enhanced removal of nitrate in the maize rhizosphere by plant growth-promoting Bacillus megaterium NCT-2, and its colonization pattern in response to nitrate. Chemosphere, 208: 316-324.
Cordero, I., Balaguer, L., Rincón, A., Pueyo, J.J. 2018. Inoculation of tomato plants with selected PGPR represents a feasible alternative to chemical fertilization under salt stress. Journal of Plant Nutrition and Soil Science, 181(5): 694-703.
Dhanasekar, R., Dhandapani, R. 2012. Effect of biofertilizers on the growth of Helianthus annuus. International Journal of Plant, Animal and Environmental Sciences, 2: 143-147.
Di Martino, C., Palumbo, G., Vitullo, D., Di Santo, P., Fuggi, A. 2018. Regulation of mycorrhiza development in durum wheat by P fertilization: Effect on plant nitrogen metabolism. Journal of Plant Nutrition and Soil Science, 181(3): 429-440.
Esitken, A., Pirlak, L., Turan, M., Sahin, F. 2006. Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. ScientiaHorticulturae, 110(4): 324-327.
Gabra, F.A., Abd-Alla, M.H., Danial, A. W., Abdel-Basset, R., Abdel-Wahab, A.M. 2019. Production of biofuel from sugarcane molasses by diazotrophic Bacillus and recycle of spent bacterial biomass as biofertilizer inoculants for oil crops. Biocatalysis and Agricultural Biotechnology, 19: 101112.
Gupta, G., Parihar, S. S., Ahirwar, N.K., Snehi, S.K., Singh, V. 2015. Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. Journal of Microb BiochemTechnol, 7(2): 096-102.
Hernández-León, R., Rojas-Solís, D., Contreras-Pérez, M., del Carmen Orozco-Mosqueda, M., Macías-Rodríguez, L.I., Reyes-de la Cruz, H., Valencia-Cantero, E., Santoyo, G. 2015. Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biological Control, 81:83-92.
Hijri, M., & Bâ, A. 2018. Mycorrhiza in tropical and neotropical ecosystems. Frontiers in plant science, 9, 308.
Jaleel, C.A., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R., Panneerselvam, R. 2007. Pseudomonasfluorescens enhances biomass yield and ajmalicine production in Catharanthusroseus under water deficit stress. Colloids and Surfaces B: Biointerfaces, 60(1): 7-11.
Jamil, M., Ahamd, M., Anwar, F., Zahir, Z. A, Kharal, M. A, Nazli, F. 2018. Inducing drought tolerance in wheat through combined use of l-tryptophan and Pseudomonas fluorescens. Pakistan Journal of Agricultural Sciences, 55 (2).
Jiménez-Moreno, M.J., del Carmen Moreno-Márquez, M., Moreno-Alías, I., Rapoport, H., Fernández-Escobar, R. 2018. Interaction between mycorrhization with Glomusintraradices and phosphorus in nursery olive plants. Scientia Horticulturae, 233:249-255.
Katiyar, V., Goel, R., 2003. Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonasfluorescens. Microbiological research, 158(2): 163-168.
Khaosaad, T., García-Garrido, J.M., Steinkellner, S., Vierheilig, H. 2007. Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biology and Biochemistry, 39(3): 727-734.
Kochar, M., Upadhyay, A., Srivastava, S. 2011. Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens Psd and plant growth regulation by hormone overexpression. Research in microbiology, 162(4): 426-435.
Kumar, V., Behl, R. K., Narula, N. 2001. Establishment of phosphate-solubilizing strains of Azotobacterchroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions. Microbiological research, 156(1): 87-93.
Kutlu, M., Cakmakci, R., Hosseinpour, A., Karagöz, H. 2019. The use of plant growth promoting rhizobacteria (PGPR)’s effect on essential oil rate, essential oil content, some morphological parameters and nutrient uptake of Turkish oregano. Applied Ecology and Environmental Research, 17(2): 1641-1653.
Liu, N., Shao, C., Sun, H., Liu, Z., Guan, Y., Wu, L., Zhang, L., Pan, X., Zhang, Z., Zhang, Y., Zhang, B. 2020. Arbuscularmycorrhizal fungi biofertilizer improves American ginseng (Panaxquinquefolius L.) growth under the continuous cropping regime. Geoderma, 363: 114-155.
Mathivanan, S., Chidambaram, A.A., Robert, G.A., Kalaikandhan, R. 2017. Impact of PGPR inoculation on photosynthetic pigment and protein contents in Arachishypogaea L. Journal of Scientific Agriculture, 1: 29-36.
Meena, M. L., Gehlot, V.S., Meena, D. C., Kishor, S., Kishor, S., Kumar, S., Meena, J. K. 2017. Impact of biofertilizers on growth, yield and quality of tomato (Lycopersiconesculentum Mill.) cv. PusaSheetal. Journal of Pharmacognosy and Phytochemistry, 6(4):1579-1583.
Meza, B., de-Bashan, L.E., Hernandez, J.P., Bashan, Y. 2015. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillumbrasilense. Research in microbiology, 166(5): 399-407.
Moghimi, c., 2006. Introduction of Some Important Rangeland Species. Aaron Publications, 669 (In Persian)
Nain, L., Yadav, R.C. and Saxena, J. 2012. Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi arid deserts. Applied soil ecology, 59, pp.124-135.
Narula, N., Kumar, V., Behl, R. K., Deubel, A., Gransee, A., Merbach, W. 2000. Effect of P‐solubilizing Azotobacterchroococcum on N, P, K uptake in P‐responsive wheat genotypes grown under greenhouse conditions. Journal of Plant Nutrition and Soil Science, 163(4): 393-398.
Norris, J. R., Read, D.J., Varma, A.K. 1991. Techniques for the study of mycorrhiza. Academic Press.
Park, Y. S, Dutta, S., Ann, M., Raaijmakers, J. M., Park, K. 2015. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochemical and Biophysical Research Communications, 461(2): 361-365.
Pérez-Montaño, F., Alías-Villegas, C., Bellogín, R. A., Del Cerro, P., Espuny, M. R., Jiménez-Guerrero, I., López-Baena, F.J., Ollero, F. J., Cubo, T. 2014. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiological research, 169(5-6): 325-336.
Phillips, J. M., Hayman, D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscularmycorrhizal fungi for rapid assessment of infection. Transactions of the British mycological Society, 55(1): 158-161.
Prabhukarthikeyan, S. R., Keerthana, U., Raguchander, T. 2018. Antibiotic-producing Pseudomonas fluorescens mediates rhizome rot disease resistance and promotes plant growth in turmeric plants. Microbiological research, 210: 65-73.
Qiu, L., Bi, Y., Jiang, B., Wang, Z., Zhang, Y., Zhakypbek, Y. 2019. Arbuscularmycorrhizal fungi ameliorate the chemical properties and enzyme activities of rhizosphere soil in reclaimed mining subsidence in northwestern China. Journal of Arid Land, 11(1): 135-147.
Ranjbar-Fordoei, A. 2018. Comparative Functioning of Photosynthetic Apparatus and Leaf Water Potential in Zygophyllumeurypterum (Boiss&Bushe) During Phenological Phases and Summer Drought. Desert Ecosystem Engineering Journal, 1(1):53-60.
Salim, H. A., Aziz, A. K., Mahdi, M. H., Ali, M. A. K., Salman, M.H., Hussein, M. M., Mohammed, L. K., Ahmed, M.S., Khalil, A.Y., Hadi, T.A. 2018. Effect of bio-fertilizers Azotobacterchroococcum and Pseudomonas fluorescens on growth of broccoli (Brassica oleracea L. var. Italica). Journal of Advances in Biology, 11(01).
Shankarappa, T. H., Mushrif, S.K., Subramanyam, B., Sreenatha, A., Maruthi Prasad, B. N., Aswathanarayana Reddy, N. 2017. Effect of biofertilizers on growth and establishment of cashew grafts under nursery condition. International Journal of Current Microbiology and Applied Sciences, 6(8): 1959-1965.
Shawky, E., Gabr, N., El-gindi, M., Mekky, R. 2019. A Comprehensive Review on Genus Zygophyllum. Journal of Advanced Pharmacy Research, 3(1): 1-16.
Singh, D., Raghuvanshi, K., Chaurasiyam, A., Dutta, S.K., Dubey, S.K. 2018. Enhancing the nutrient uptake and quality of pearlmillet (Pennisetumglaucum L.) through use of biofertilizers. International Journal of Current Microbiology and Applied Sciences, 7: 3296-3306.
Sivasakhti, S., Usharani, G., Saranraj, P. 2014. Biocontrol potentiality of plantgrowth promoting bacteria (PGPR)-Pseudomonasfluorescence and Bacillussubtilis: A review. African Journal of Agricultural Research, 9: 1265-1277.
Swamy, M. K., Akhtar, M.S., Sinniah, U. R. 2016. Response of PGPR and AM fungi toward growth and secondary metabolite production in medicinal and aromatic plants. In Plant, soil and microbes,145-168.
Tian, L., Shi, S., Ma, L., Zhou, X., Luo, S., Zhang, J., Lu, B., Tian, C. 2019. The effect of Glomusintraradices on the physiological properties of Panax ginseng and on rhizospheric microbial diversity. Journal of ginseng research, 43(1):77-85.
Turan, M., Ekinci, M., Yildirim, E., Güneş, A., Karagöz, K., Kotan, R., &Dursun, A. 2014. Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turkish Journal of Agriculture and Forestry, 38(3), 327-333.
Varma, A. 2008. Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer Science & Business Media.
Zhang, Y.F., Wang, P., Yang, Y. F., Bi, Q., Tian, S.Y., Shi, X. W. 2011. Arbuscular mycorrhizal fungi improve reestablishment of Leymuschinensis in bare saline-alkaline soil: Implication on vegetation restoration of extremely degraded land. Journal of Arid Environments, 75(9):773-778.