Encapsulation of Rosa damascena Mill. essential oil in nanoliposomes: Physicochemical and antioxidant activity features

Document Type : Original Research

Authors
1 Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, P. O. Box: 15115-336, Tehran, Islamic Republic of Iran.
2 Department of Food Science and Technology, Faculty of Agriculture, Research and Technology Institute of Plant Production (RTIPP), Shahid Bahonar University of Kerman, Kerman, Islamic Republic of Iran.
Abstract
Rosa damascena Mill. essential oil (EO) was encapsulated in nanoliposomes to overcome its low stability and limited solubility. The fabrication of EO-loaded nanoliposomes (EO-LNLs) was optimized based on the response surface methodology (RSM) with central composite face-centred (CCF) design. Different concentrations of EO (500, 1000, and 1500 ppm) and lecithin (0.5, 1.25, and 2% w/v) were applied for preparing nanoliposomes. The obtained nanoliposomes had a particle size of 82-124 nm, a zeta potential of -55 to -30 mV and a polydispersity index (PDI) of 0.270- 0.342. The nanoliposomes prepared with 1.56% lecithin and 500 ppm of EO had the best properties with the encapsulation efficiency of 84%. The results obtained from different instrumental methods (DSC, FT-IR, and TEM) verified the encapsulation of EO in nanoliposomes. According to the antioxidant activity evaluations based on DPPH, ABTS⁰+, and FRAP assays, free EO had higher radical scavenging activity and lower EC50 than encapsulated EO. The highest in vitro release of EO from nanoliposomes occurred at pH=3. During the storage of nanoliposomes for seven weeks at 4oC, their particle size was increased by 7.0%. Accordingly, one can deduce that encapsulation of Rosa damascena Mill. EO in nanoliposomes can protect it against undesirable conditions and keep its properties. Therefore, it can be suggested to be used, as a natural preservative, in different matrixes such as food, medicine, and cosmetic industries.

Keywords

Subjects


1. Aguilar-Pérez, K. M., Medina, D. I., Narayanan, J., Parra-Saldívar, R. and Iqbal, H. 2021. Synthesis and Nano-Sized Characterization of Bioactive Oregano Essential Oil Molecule Loaded Small Unilamellar Nanoliposomes with Antifungal Potentialities. Molecules, 26(10): 2880.‏
2. Ajeeshkumar, K. K., Aneesh, P. A., Raju, N., Suseela, M., Ravishankar, C. N. and Benjakul, S. 2021. Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Compr. Rev. Food Sci. Food Saf., 20(2): 1280-1306.‏
3. Bakkali, F., Averbeck, S., Averbeck, D. and Idaomar, M. 2008. Biological effects of essential oils–a review. Food Chem. Toxicol., 46(2): 446-475.‏
4. Basim, E. and Basim, H. 2003. Antibacterial activity of Rosa damascena essential oil. Fitoterapia, 74(4): 394-396.
5. ‏ Benzie, I. F. and Strain, J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal. Biochem., 239: 70-76.
6. Bouarab, L., Maherani, B., Kheirolomoom, A., Hasan, M., Aliakbarian, B., Linder, M. and Arab-Tehrany, E. 2014. Influence of lecithin-lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule. Colloids Surf. B: Biointerfaces., 115: 197-204.
7. Caddeo, C., Teskač, K., Sinico, C. and Kristl, J. 2008. Effect of resveratrol incorporated in liposomes on proliferation and UV-B protection of cells. Int. J. Pharm., 363: 183-191.
8. Colas, J. C., Shi, W., Rao, V. M., Omri, A., Mozafari, M. R. and Singh, H. 2007. Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron, 38(8): 841-847.‏
9. Cui, H., Zhang, C., Li, C. and Lin, L. 2020. Inhibition of Escherichia coli O157: H7 biofilm on vegetable surface by solid liposomes of clove oil. LWT, 117: 108656.‏‏
10. Detoni, C. B., de Oliveira, D. M., Santo, I. E., Pedro, A. S., El-Bacha, R., da Silva Velozo, E., Ferreira, D., Sarmento, B. and de Magalhães Cabral-Albuquerque, E. C. 2012. Evaluation of thermal-oxidative stability and antiglioma activity of Zanthoxylum tingoassuiba essential oil entrapped into multi-and unilamellar liposomes. J. Liposome Res., 22(1): 1-7.‏
11. Đorđević, V., Paraskevopoulou, A., Mantzouridou, F., Lalou, S., Pantić, M., Bugarski, B., & Nedović, V. 2016. Encapsulation technologies for food industry. In Emerging and Traditional Technologies for Safe, Healthy and Quality Food (pp. 329-382). Springer, Cham.
12. Ghavam, M., Afzali, A., Manconi, M., Bacchetta, G. and Manca, M. L. 2021. Variability in chemical composition and antimicrobial activity of essential oil of Rosa× damascena Herrm. from mountainous regions of Iran. Chem. Biol. Technol. Agric., 8(1): 1-16.‏
13. Gortzi, O., Lalas, S., Chinou, I. and Tsaknis, J. 2006. Reevaluation of antimicrobial and antioxidant activity of Thymus spp. Extracts before and after encapsulation in liposomes. J. Food Prot., 69: 2998-3005.
14. Heydari, M. K., Assadpour, E., Jafari, S. M. and Javadian, H. 2021. Encapsulation of rose essential oil using whey protein concentrate-pectin nanocomplexes: Optimization of the effective parameters. Food Chem., 356: 129731.
15. Jalali-Heravi, M., Parastar, H. and Sereshti, H. 2008. Development of a method for analysis of Iranian damask rose oil: Combination of gas chromatography–mass spectrometry with chemometric techniques. Anal. Chim. Acta., 623: 11-21.‏
16. Keivani Nahr, F., Ghanbarzadeh, B., Hamishehkar, H., Kafil, H. S., Hoseini, M. and Moghadam, B. E. 2019. Investigation of physicochemical properties of essential oil loaded nanoliposome for enrichment purposes. LWT--Food Sci. Technol., 105: 282–289.
17. Khorasani, S., Danaei, M. and Mozafari, M. R. 2018. Nanoliposome technology for the food and nutraceutical industries. Trends Food Sci. Technol., 79: 106-115.‏
18. Liolios, C. C., Gortzi, O., Lalas, S., Tsaknis, J. and Chinou, I. 2009. Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chem., 112: 77-83.
19. Lu, Q., Lu, P. M., Piao, J. H., Xu, X. L., Chen, J., Zhu, L. and Jiang J. G. 2014. Preparation and physicochemical characteristics of an allicin nanoliposome and its release behavior. LWT--Food Sci. Technol., 57: 686-695.
20. Luo, M., Zhang, R., Liu, L., Chi, J., Huang, F., Dong, L., Ma, Q., Jia, X. and Zhang, M. 2020. Preparation, stability and antioxidant capacity of nano liposomes loaded with procyandins from lychee pericarp. J. Food Eng., 284: 110065.‏
21. Madrigal-Carballo, S., Lim, S., Rodriguez, G., Vila, A. O., Krueger, C. G., Gunasekaran, S. and Reed, J. D. 2010. Biopolymer coating of soybean lecithin liposomes via layer-by-layer self-assembly as novel delivery system for ellagic acid. J. Funct. Foods, 2: 99-106.
22. Machado, A. R., Pinheiro, A. C., Vicente, A. A., Souza-Soares, L. A. and Cerqueira, M. A. 2019. Liposomes loaded with phenolic extracts of Spirulina LEB-18: Physicochemical characterization and behavior under simulated gastrointestinal conditions. Food Res. Int., 120: 656-667.‏
23. Mahboubi, M., Kazempour, N., Khamechian, T., Fallah, M. H. and Kermani, M. M. 2011. Chemical composition and antimicrobial activity of Rosa damascena Mill essential oil. J. Biol. Act. Prod. Nat., 1(1): 19-26.
24. Maherani, B., Arab-Tehrany, E., Kheirolomoom, A., Reshetov, V., Stebe, M. J. and Linder, M. 2012. Optimization and characterization of liposome formulation by mixture design. Analyst, 137(3): 773-786.‏
25. Mileva, M., Krumova, E., Miteva-Staleva, J., Kostadinova, N., Dobreva, A. and Galabov, A. S. 2014. Chemical compounds, in vitro antioxidant and antifungal activities of some plant essential oils belonging to Rosaceae family. C. R. Acad. Bulg. Sci., 67(10): 1363-1368.‏
26. Naquvi, K. J., Ansari, S. H., Ali, M. and Najmi, A. K. 2014. Volatile oil composition of Rosa damascena Mill. (Rosaceae). J. Pharmacogn. Phytochem., 2: 130-134.
27. Nikolova, G., Karamalakova, Y., Kovacheva, N., Stanev, S., Zheleva, A. and Gadjeva, V. 2016. Protective effect of two essential oils isolated from Rosa damascena Mill. and Lavandula angustifolia Mill., and two classic antioxidants against L-dopa oxidative toxicity induced in healthy mice. Regul. Toxicol. Pharmacol., 81: 1-7.‏
28. Nounou, M., El-Khordagui, L. K., Khalafallah, N. A. and Khalil, S. A. 2006. In vitro drug release of hydrophilic and hydrophobic drug entities from liposomal dispersions and gels. Acta Pharma., 56: 311-324.‏
29. Qiu, L., Zhang, M., Adhikari, B. and Chang, L. 2022. Microencapsulation of rose essential oil in mung bean protein isolate-apricot peel pectin complex coacervates and characterization of microcapsules. Food Hydrocolloids, 124: 107366.
30. ‏Rafiee, Z., Barzegar, M., Sahari, M. A. and Maherani, B. 2017. Nanoliposomal carriers for improvement the bioavailability of high–valued phenolic compounds of pistachio green hull extract. Food Chem., 220: 115-122.
31. Re, R., Pallegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med., 26: 1231-1237.
32. Rezaei, A., Fathi, M. and Jafari, S. M. 2019. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids, 88: 146-162.
33. Rezaie-Tavirani, M., Fayazfar, S., Heydari-Keshel, S., Rezaee, M. B., Zamanian-Azodi, M., Rezaei-Tavirani, M. and Khodarahmi, R. 2013. Effect of essential oil of Rosa Damascena on human colon cancer cell line SW742. Gastroenterol Hepatol Bed Bench., 6(1): 25.‏
34. Sebaaly, C., Jraij, A., Fessi, H., Charcosset, C. and Greige-Gerges, H. 2015. Preparation and characterization of clove essential oil-loaded liposomes. Food Chem., 178: 52-62.
35. Siroli, L., Patrignani, F., Montanari, C., Tabanelli, G., Bargossi, E., Gardini, F. and Lanciotti, R. 2014. Characterization of oregano (Origanum vulgare) essential oil and definition of its antimicrobial activity against Listeria monocytogenes and Escherichia coli in vitro system and on foodstuff surfaces. Afr. J. Microbiol. Res., 8(29): 2746-2753.
36. Toluei, Z., Hosseini Tafreshi, S. A. and Arefi Torkabadi, M. 2019. Comparative chemical composition analysis of essential oils in different populations of Damask Rose from Iran. J. Agric. Sci. Technol., 21: 423-437.
37. Ulusoy, S., Boşgelmez-Tınaz, G. and Seçilmiş-Canbay, H. 2009. Tocopherol, carotene, phenolic contents and antibacterial properties of rose essential oil, hydrosol and absolute. Curr. Microbiol., 59: 554-558.
38. Wu, J., Liu, H., Ge, S., Wang, S., Qin, Z., Chen, L., Zheng, Q., Liu, Q. and Zhang, Q. 2015. The preparation, characterization, antimicrobial stability and in vitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes. Food Hydrocolloids, 43: 427-435.‏
39. Xiao, Z., Kang, Y., Hou, W., Niu, Y. and Kou, X. 2019. Microcapsules based on octenyl succinic anhydride (OSA)-modified starch and maltodextrins changing the composition and release property of rose essential oil. Int. J. Biol. Macromol., 137: 132-138.‏
40. Yen, F. L., Wu, T. H., Lin, L. T., Cham, T. M. and Lin, C. C. 2008. Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats. Food Chem. Toxicol., 46(5): 1771-1777.‏
41. Zhong, Y. and Shahidi, F. 2012. Lipophilised epigallocatechin gallate (EGCG) derivatives and their antioxidant potential in food and biological systems. Food Chem., 131: 22-30.‏
42. Zou, L., Peng, S., Liu, W., Gan, L., Liu, W., Liang, R., Liu, C., Niu, L., Cao, Y., Liu, Z. and Chen, X. 2014. Improved in vitro digestion stability of (-)-epigallocatechin gallate through nanoliposome encapsulation. Food Res. Int., 64: 492-499.
43. Zu, Y., Yu, H., Liang, L., Fu, Y., Efferth, T., Liu, X. and Wu, N. 2010. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells. Molecules, 15(5): 3200-3210.‏