Understanding Farmers' Adaptation Behavior against Drought: Application of the Health Belief Model

Document Type : Original Research

Authors
Department of Agricultural Economics and Rural Development, College of Agriculture, Lorestan University, Lorestan, Islamic Republic of Iran.
Abstract
As climate change intensifies the frequency and severity of droughts, adaptive behavior becomes increasingly crucial. Farmers' capacity to modify their practices in response to evolving climate conditions is vital for ensuring long-term agricultural sustainability and food security. Therefore, this study aimed to investigate the psychological factors influencing farmers' adaptation behaviors in response to drought using the Health Belief Model. The sample comprised 380 farmers from Kuhdashat Township, Lorestan Province, Iran, selected via a three-stage cluster sampling method. Data were collected using a researcher-designed questionnaire, whose validity and reliability were confirmed. Structural Equation Modeling (SEM) results indicated that self-efficacy, perceived benefits, perceived vulnerability, and perceived barriers explained about 49% of the variance in farmers’ adaptation behavior. Perceived benefits emerged as the strongest predictor of adaptation, while cues to action and perceived severity were insignificant. These findings support the health belief model's practicality and effectiveness in examining water conservation behavior among Iranian farmers.

Keywords

Subjects


1.       Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H. and Younis, I. 2022. A Review of the Global Climate Change Impacts, Adaptation, and Sustainable Mitigation Measures. Environ. Sci. Pollut. Res., 29(28): 42539-42559.
2.       Ajzen, I. 2020. The Theory of Planned Behavior: Frequently Asked Questions. Hum. Behav. Emerg. Technol., 2(4): 314-324.
3.       Anik, A. R., Rahman, S., Sarker, J. R. and Al Hasan, M. 2021. Farmers’ Adaptation Strategies to Combat Climate Change in Drought Prone Areas in Bangladesh. Int. J. Disaster. Risk. Reduct., 65: 102562.
4.       Bagagnan, A. R., Ouedraogo, I. and Fonta, W. M. 2019a. Perceived Climate Variability and Farm Level Adaptation in the Central River Region of the Gambia. Atmosphere, 10(7): 423.
5.       Bagagnan, A. R., Ouedraogo, I., Fonta, W. M., Sowe, M. and Wallis, A. 2019b. Can Protection Motivation Theory Explain Farmers’ Adaptation to Climate Change Decision Making in the Gambia? Climate, 7(130): 1-14.
6.       Barattucci, M., Pagliaro, S., Ballone, C., Teresi, M., Consoli, C., Garofalo, A. and Ramaci, T. 2022. Trust in Science as a Possible Mediator between Different Antecedents and COVID-19 Booster Vaccination Intention: An Integration of Health Belief Model (HBM) and Theory of Planned Behavior (TPB). Vaccines, 10(7): 1099.
7.       Cardona, M. I., Monsees, J., Schmachtenberg, T., Grünewald, A. and Thyrian, J. R. 2023. Implementing a Physical Activity Project for People with Dementia in Germany–Identification of Barriers and Facilitator Using Consolidated Framework for Implementation Research (CFIR): A Qualitative Study. PLoS One, 18(8): 0289737.
8.       Chin, W. W. 2009. How to Write up and Report PLS Analyses. In: “Handbook of partial Least Squares: Concepts, Methods and Applications”. Springer, Heidelberg, Berlin, PP 655-690.
9.       Delfiyan, F., Yazdanpanah, M., Forouzani, M. and Yaghoubi, J. 2020. Farmers’ Adaptation to Drought Risk through Farm–Level Decisions: The Case of Farmers in Dehloran County Southwest of Iran. Clim. Dev., 13(2): 152–163.
10.    Gebrehiwot, T. and van der Veen, A. 2020. Farmers’ Drought Experience, Risk Perceptions, and Behavioral Intentions for Adaptation: Evidence from Ethiopia. Clim. Dev., 13(6): 493–502.
11.    Hair, J., Black, W., Babin, B. Y. A., Anderson, R. and Tatham, R. 2010. Multivariate Data Analysis. 7th Edition, Pearson Prentice Hall, New Jersey.
12.    Hair, J.F., Hult, G. T. M., Ringle, C. M. and Sarstedt, M. A. 2017. Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 2nd Edition, Sage Publications Limited Inc., London, UK, Thousand Oaks, CA, USA.
13.    Hasan, M. M., Chang, Y., Lim, W. M., Kalam, A. and Shamim, A. 2024. A Social Cognitive Theory of Customer Value Co-Creation Behavior: Evidence from Healthcare. J. Health Organ. Manag., 38(9): 360-388.
14.    Hernández-López, J. A., Puerta-Cortés, D. X. and Andrade, H. J. 2024. Predictive Analysis of Adaptation to Drought of Farmers in the Central Zone of Colombia. Sustainability, 16(16): 7210.
15.    IPCC. 2014.  Climate Change 2014: Synthesis Report. “Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change”, (Eds.): Pachauri, R. K. and. Meyer L. A. IPCC, Geneva, Switzerland, 151 PP.
16.    Jeong, J. Y. and Ham, S. 2018. Application of the Health Belief Model to Customers’ Use of Menu Labels in Restaurants.  Appetite, 123: 208–215.
17.    Krejcie, R. V. and Morgan, D. W. 1970. Determining Sample Size for Research Activities. Educ. Psychol. Meas., 30(3): 607–610.
18.    Lowry, P. B., and Gaskin, J. 2014. Partial Least Squares (PLS) Structural Equation Modeling (SEM) for Building and Testing Behavioral Causal Theory: When to Choose It and How to Use It. Trans. Profess. Commun., 57: 1-2.
19.    Luu, T. A., Nguyen, A. T., Trinh, Q. A., Pham, V. T., Le, B. B., Nguyen, D. T., Hoang, Q. N., Pham, H. T. T., Nguyen, T. K., Luu, V. N. and Hens, L. 2019. Farmers’ Intention to Climate Change Adaptation in Agriculture in the Red River Delta Biosphere Reserve (Vietnam): A Combination of Structural Equation Modeling (SEM) and Protection Motivation Theory (PMT). Sustainability, 11(10): 1-17.
20.    Maddocks, A., Young, R. S. and Reig, P. 2015. Ranking the World’s Most Water-Stressed Countries in 2040. World Resources Institute. http://www.wri.org/blog/2015/08/ranking-world%E2%80%99s-most-water-stressed-countries-2040
21.    McIlwain, L., Baldwin, C., Manathunga, C., Baird, J. and Pickering, G. 2022. Climate Change Mitigation Discourses in the Institutional Instruments that Shape Catchment Governance in Queensland, Australia. Australas. J. Environ. Manag., 29(3): 258-274.
22.    Meteorological Organization of Mazandaran. 2020. Resource Document. Available from: http://www.irimo.ir/far/wd/720.
23.    Mitter, H., Obermeier, K. and Schmid, E. 2024. Exploring Smallholder Farmers’ Climate Change Adaptation Intentions in Tiruchirappalli District, South India. Agric. Human. Values, 30: 1-17.
24.    Mulwa, F., Li, Z. and Fangninou, F. F. 2021. Water Scarcity in Kenya: Current Status, Challenges and Future Solutions. OALib J., 8(1): 1-15.
25.    Muthelo, D., Owusu-Sekyere, E. and Ogundeji, A. A. 2019. Smallholder Farmers’ Adaptation to Drought: Identifying Effective Adaptive Strategies and Measures. Water, 11(10): 2069.
26.    Nguyen, T. T., Grote, U., Neubacher, F., Do, M. H. and Paudel, G. P. 2023. Security Risks from Climate Change and Environmental Degradation: Implications for Sustainable Land Use Transformation in the Global South. Curr. Opin. Environ. Sustain., 63: 101322.
27.    Patnaik, U., Das, P. K. and Bahinipati, C. S. 2019. Development Interventions, Adaptation Decisions and Farmers’ Well-Being: Evidence from Drought-Prone Households in Rural India. Clim. Dev., 11(4): 302-318.
28.    Piñeiro, V., Arias, J., Dürr, J., Elverdin, P., Ibáñez, A. M., Kinengyere, A. and Torero, M. 2020. A Scoping Review on Incentives for Adoption of Sustainable Agricultural Practices and Their Outcomes. Nat. Sustain., 3(10): 809-820.
29.    Raheli, H., Zarifian, S. and Yazdanpanah, M. 2020. The Power of the Health Belief Model (HBM) to Predict Water Demand Management: A Case Study of Sarmers’ Water Conservation in Iran. J. Environ. Manag., 263: 110388.
30.    Rahimi-Feyzabad, F., Yazdanpanah, M., Burton, R. J. Forouzani, M. and Mohammadzadeh, S. 2020. The Use of a Bourdieusian ‘Capitals’ Model for Understanding Farmers’ Irrigation Behavior in Iran. J. Hydrol., 591: 125442.
31.    Rosenstock, I. M., Strecher, V. J. and Becker, M. H. 1998. Social Learning Theory and the Health Belief Model. Health. Educ. Q., 15: 175-183.
32.    Savari, M. and Shokati Amghani, M. 2021. Factors Influencing Farmers’ Adaptation Strategies in Confronting the Drought in Iran. Environ. Dev. Sustain., 23: 4949-4972.
33.    Shabanali Fami, H., Azizi, S. and Alambeigi, A. 2020. Clarifying the Role of Drought Adaptation Strategies on Changing Farming Mode by Livestock Farmers: Evidence from Komijan Township, Iran. J. Agric. Sci. Technol., 22(2): 333-346.
34.    Sharifi, A. 2020. Co-Benefits and Synergies between Urban Climate Change Mitigation and Adaptation Measures: A Literature Review. Sci. Total Environ., 750: 141642.
35.    Silva, J. A. 2024. Circular Water Management: Benefits and Challenges to Improve Water Availability. Manag. Environ. Qual., 35(6): 1397-1414.
36.    Stone, M. 1974. Cross‐Validatory Choice and Assessment of Statistical Predictions. J. R. Stat. Soc., 36(2): 111-133.
37.    Subedi, S., Leal Filho, W. and Adedeji, A. 2023. An Assessment of the Health Belief Model (HBM) Properties as Predictors of COVID-19 Preventive Behaviour. J. Public. Health., 14:1-11.
38.    Tajeri Moghadam, M., Raheli, H., Zariffian, S. and Yazdanpanah, M. 2018. Predicting Wheat Farmers’ Behavior in Neyshabur Plain and Determination of Factors Affecting on Them in Relation to Water Resources Conservation. J. Agric. Sci. Sustain. Prod., 28(2): 199-215.
39.    Tajeri Moghadam, M., Raheli, H., Zarifi, S. and Yazdanpanah, M. 2020. The Power of the Health Belief Model (HBM) to Predict Water Demand Management: A Case Study of Farmers’ Water Conservation in Iran. J. Environ. Manag., 263: 110388.
40.    Tesfahunegn, G. B., Mekonen, K. and Tekle, A. 2016. Farmers’ Perception on Causes, Indicators and Determinants of Climate Change in Northern Ethiopia: Implication for Developing Adaptation Strategies. Appl. Geogr., 73: 1–12.
41.    Von Abubakari, F., Inkoom, E. W., Kwadwo, M. and Opoku, M. 2024. Barriers of Smallholder Farmers to Climate Change Adaptation Decisions: Evidence from Semi-Arid Region of Ghana. Afr. J. Agric. Res., 20(8): 729-735.
42.    Wang, K. and Zhang, A. 2018. Climate Change, Natural Disasters and Adaptation Investments: Inter-and Intra-Port Competition and Cooperation. Transp. Res. B Methodol., 117: 158–189.
43.    Wang, Y., Wang, Z., Zhao, M. and Li, B. 2024. The Influence of Technology Perceptions on Farmers' Water-Saving Irrigation Technology Adoption Behavior in the North China Plain. Water Policy, 26(2): 170-188.
44.    Wens, M. L., Mwangi, M. N., van Loon, A. F. and Aerts, J. C. 2021. Complexities of Drought Adaptive Behaviour: Linking Theory to Data on Smallholder Farmer Adaptation Decisions. Int. J. Disaster. Risk. Reduct., 63: 102435.
45.    Wong, B. Y. M., Lam, T. H., Lai, A. Y. K., Wang, M. P. and Ho, S. Y. 2021. Perceived Benefits and Harms of the COVID-19 Pandemic on Family Well-Being and Their Sociodemographic Disparities in Hong Kong: A Cross-Sectional Study. Int. J. Environ. Res. Public Health, 18(3): 1217.
46.    Yazdanpanah, M., Feyzabad, F. R., Forouzani, M., Mohammadzadeh, S. and Burton, R. J. 2015. Predicting Farmers’ Water Conservation Goals and Behavior in Iran: A Test of Social Cognitive Theory. Land Use Policy, 47: 401-407.
47.    Yazdanpanah, M., Moghadam, M. T., Zobeidi, T., Turetta, A. P. D., Eufemia, L. and Sieber, S. 2022. What Factors Contribute to Conversion to Organic Farming? Consideration of the Health Belief Model in Relation to the Uptake of Organic Farming by Iranian Farmers. Environ. Plan. Maneg., 65(5): 907-929.
48.    Zobeidi, T., Yazdanpanah, M., Komendantova, N., Sieber, S. and Lohr, K. 2021. Factors Affecting Smallholder Farmers’ Technical and Non-Technical Adaptation Responses to Drought in Iran. J. Environ. Manag., 298: 113552.