Analyzing Fresh Food Customer Loyalty: A Clustering and Ordinal Regression Approach

Document Type : Original Research

Authors
Department of Agricultural Economics, Karaj Branch, Islamic Azad University, Karaj, Islamic Republic of Iran.
Abstract
This study investigates customer loyalty in Iran's chain stores, with a particular emphasis on fresh food consumers. The research utilizes a combination of K-means clustering, a weighted RFM (Recency, Frequency, Monetary) model, and ordinal logistic regression to analyze customer behavior. Using real transaction data from 9,014 customers alongside questionnaire responses, the analysis categorizes customers into four distinct groups: very loyal, loyal, at-risk, and disloyal. The weighted RFM model indicates that recency is the most significant predictor of loyalty. Further, the ordinal logistic regression identifies several key factors influencing loyalty: age, marital status, income level, perceived food quality, preference for modern stores, and brand image. These all have positive affect on loyalty; on the contrary, the importance of price and a preference for packaging-free products negatively impact loyalty. These findings provide actionable insights for retail managers, enabling them to develop segment-specific strategies that enhance customer loyalty and strengthen competitiveness in Iran’s dynamic retail sector.

Keywords

Subjects


1. Ailobhio, D. T., and. Ikughur, J. A. 2024. A Review of Some Goodness-of-Fit Tests for Logistic Regression Model. Asian J. Prob. Stat., 26 (7): 75-85.
2. Akbar, M. A. 2024. Customer-Centric Strategies: Navigating the Dynamics of Marketing Management for Competitive Advantage. ABIM, 2(2): 96–109.
3. Alves Gomes, M. and Meisen, T. 2023. A Review on Customer Segmentation Methods for Personalized Customer Targeting in E-commerce Use Cases. Inf. Syst. e-Bus. Manag., 21(3): 527-570.
4. Bagirov, A. M., Aliguliyev, R. M. and Sultanova, N. 2023. Finding Compact and Well-Separated Clusters: Clustering Using Silhouette Coefficients. Pattern Recognit., 135: 109144.
5. Barbosa, B., Shabani Shojaei, A. and Miranda, H. 2023. Packaging-free Practices in Food Retail: The Impact on Customer Loyalty. BALT J MANAG, 18(4): 474-492.
6. Barus, O.P., Nathasya, C., Pangaribuan, J. J. 2023. The Implementation of RFM Analysis to Customer Profiling Using K-Means Clustering. Math. Model. Eng. Probl., 10(1): 298-303.
7. Chang, I. C., Horng, J. S., Liu, C. H., Chou, S. F., and Yu, T. Y. 2022. Exploration of Topic Classification in the Tourism Field with Text Mining Technology: A Case Study of the Academic Journal Papers. Sustainability, 14(7), 4053.
8. Chouaten, K., Rodriguez Rivero, C., Nack, F. and Reckers, M. 2024. Unlocking High-Value Football Fans: Unsupervised Machine Learning for Customer Segmentation and Lifetime Value. Front. Sports Act. Living, 6:1362489.
9. De Sousa, A., Moro, S., and Pereira, R. 2024. Cluster-Based Approaches Toward Developing a Customer Loyalty Program in a Private Security Company. Appl. Sci., 14(1): 78.
10. Dey, D., and Banerjee, K. 2023. AI Driven Customer Segmentation and Recommendation of Product for Super Mall. J. Mines Met. Fuels, 71(5): 656–660.
11. Figler, S. A., Sriraj, P. S., Welch, E. W., and Yavuz, N. 2011. Customer Loyalty and Chicago, Illinois, Transit Authority Buses: Results from 2008 Customer Satisfaction Survey. Transp. Res. Rec, 2216(1): 148-156.
12. Gustriansyah, R., Suhandi, N. and Antony, F. 2020. Clustering Optimization in RFM Analysis Based on K-Means. Indones. J. Electr. Eng. Comput. Sci., 18(1): 470-477.
13. Gutiérrez, M. Pérez-Ortiz, J. Sánchez-Monedero, F., Fernández N. and Hervás-Martínez, C. 2016.Ordinal Regression Methods: Survey and Experimental Study. IEEE Trans. Knowl. Data Eng, 28(1):127-146.
14. Ho, S. P. S. and Wong, A. 2023. The Role of Customer Personality in Premium Banking Services. J. Financ. Serv. Mark., 28(2): 285–305.
15. Hosmer, D. W., Lemeshow, S. and Sturdivant, R. X., 2013. Applied Logistic Regression. 3rd ed. New Jersey: John Wiley and Sons, Hoboken, NJ.
16. Kasem, M.S., Hamada, M. and Taj-Eddin, I. 2024. Customer Profiling, Segmentation, and Sales Prediction Using AI in Direct Marketing. Neural Comput. Appl., 36:4995–5005.
17. Kotler, P. and Armstrong, G. (2012) Principles of Marketing. 14th Edition, Pearson Education Limited, Essex, England.
18. Kumar, A. 2023. Customer Segmentation of Shopping Mall Users Using K-Means Clustering. In Advancing SMEs Toward E-Commerce Policies for Sustainability (Chapter 13: 248-270). IGI Global.
19. Liang, Y.H. 2010. Integration of Data Mining Technologies to Analyze Customer Value for the Automotive Maintenance Industry. Expert Syst. Appl., 37(12): 7489–7496.
20. Liu, H., Mu, Y., Fu, X. and Liu, Y. 2022. Passionately Attached or Properly Matched? The Effect of Self-Congruence on Grocery Store Loyalty. Br. Food J., 124 (11): 4054-4071.
21. McMullan, R. and Gilmore, A. 2008. Customer loyalty: An Empirical Study. Eur. J. Mark., 42 (9/10): 1084-1094.
22. Mensouri, D., Azmani, A. and Azmani, M. 2022. K-Means Customers Clustering by their RFMT and Score Satisfaction Analysis. Int. J. Adv. Comput. Sci. Appl., 13(6): 469-476.
23. Noorani kootenaee, M., Rezaei Dolatabadi, H. and Mohammad Shafiee, M. (2021). Developing a Model for Retailer Brand Competitiveness with the Grounded Theory Approach. Quarterly Journal of Brand Management, 8(3): 44-15.
24. Pradhan, S., Patel, G. and Priya, P. 2021. Measuring Customer Lifetime Value: Application of Analytic Hierarchy Process in Determining Relative Weights of LRFM. Int. J. Anal. Hierarchy Process, 13(3): 526-547.
25. Qin, W. and Hu, M. 2024. Dennis supermarket chain customer loyalty study. FHSS, 4(7): 349–358.
26. Rousseeuw, P. J. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. J. Comput. Appl. Math., 20: 53–65.
27. Salameh, A. A., Hatamleh, A., Azim, M. S. and Kanaan, A. G. 2020. Customer-oriented determinants of e-crm success factors. Uncertain Supply Chain Manag, 8(4):713-720.
28. Seifollahi, N., Rahimi clever, H. and Shirnezhad Moghanlou, M. 2020. The Effect of Response to Point of Purchase Advertising on Store Brand Loyalty with the Mediating Role of the Customer's Self-Concept. Quarterly Journal of Brand Management, 7(1): 213-260.
29. Sen, S. S., Alexandrov, A., Jha, S., Mcdowell, W. C., and Babakus, E. 2023. Convenient Competitive? How Brick-And-Mortar Retailers Can Cope with Online Competition. Rev. Manag. Sci., 17(5): 1615–1643.
30. Smaili, M.Y., and H. Hachimi. 2023. New RFM-D Classification Model for Improving Customer Analysis and Response Prediction. Ain Shams Eng. J., 14(12): 102254.
31. Suriansha, R. 2023. The Role of Customer Loyalty on Customer Retention in Retail Companies. Int. J. Multidiscipl. Res. Anal., 6 (7): 3359-3365.
32. Suyanto, A., and Femi, S. R. 2023. Analysis of the Effect of Impulsive Purchase and Service Quality on Customer Satisfaction and Loyalty in Beauty E-Commerce. Qual. Access Success, 24(194): 18 - 23.
33. Tan C. K. and Nurulhuda F. M. A. 2021. Customer Profiling for Malaysia Online Retail Industry using K-Means Clustering and RM Model. Int. J. Adv. Comput. Sci. Appl., 12(1): 106-113.
34. Tanveer, M., Ahmad, A. R., Mahmood, H., and Ul Haq, I. 2021. Role of Ethical Marketing in Driving Consumer Brand Relationships and Brand Loyalty: A Sustainable Marketing Approach. Sustainability, 13(12): 1-17.
35. Taulant K., Brunela T. and Shkelqim F. 2024. Understanding Customer Satisfaction Factors: A Logistic Regression Analysis. J. Educ. Soc. Res., 14(2): 218
36. Wang, H., Quintana, F. G., Lu, Y., Mohebujjaman, M., and Kamronnaher, K. 2022. How Are BMI, Nutrition, and Physical Exercise Related? An Application of Ordinal Logistic Regression. Life, 12(12): 2098.
37. Wilbert, H. J., Hoppe, A. F., Sartori, A., Stefenon, S. F., and Silva, L. A. 2023. Recency, Frequency, Monetary Value, Clustering, and Internal and External Indices for Customer Segmentation from Retail Data. Algorithms, 16(9): 396.
38. Wooldridge, J. 2015. Introductory Econometrics: A Modern Approach - Standalone Book (6th Edition). Cengage Learning.
39. Zhang, D., Shen, Z. and Li, Y. 2023. Requirement Analysis and Service Optimization of Multiple Category Fresh Products in Online Retailing Using Importance-Kano Analysis. J. Retail. Consum. Serv., 72:103253.
40. Zikienė, K., Kyguolienė, A., and Kisieliauskas, J. 2024. The influence of creative and innovative loyalty programs’ features on customers’ attitudinal, conative, and behavioural loyalty. Creat. Stud., 17(1): 254–273.
41. Zintso, Y., Fedorishina, I., Zaiachkovska, H., Kovalchuk, O. and Tyagunova, Z. 2023. Analysis of Current Trends in The Use of Digital Marketing for The Successful Promotion of Goods and Services in Ukraine. Financ. Credit Act.: Probl. Theory Pract. 3(50):174-184.

Articles in Press, Accepted Manuscript
Available Online from 01 January 2024