Bio-amelioration of saline soil using Aeluropus littoralis, arbuscular mycorrhizal fungus (AMF), and salt-resistant PGPB

Document Type : Original Research

Authors
Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
Abstract
This study aimed to evaluate the capability of the halophyte A. littoralis in symbiosis with Rhizophagus intraradices and Nocardia Halotolerans an indigenous bacterium of saline soils- on phytoextraction of Na under saline conditions. Salinity treatments included 0 (S0), 100 mM NaCl (S1), 200 mM NaCl (S2), 100 mM NaCl+50mM K2SO4 (S3), 200 mM NaCl+50mM K2SO4 (S4) levels. Plant fresh and dry weight, chlorophyll content decreased as salinity increased up to S2 level and increased thereafter. Plant root colonization in the inoculation and co-inoculation of AMF+SR-PGPB were similar. Compared to the S0 treatment, root colonization in the AMF group decreased by 23.5%, 32.6%, 13.5%, and 26.7% under S1, S2, S3, and S4 treatments, respectively. In the Bacteria+AMF group, the reduction was smaller, with decreases of 2.8%, 3.4%, and an increase of 6.8% and 1.4% under S1, S2, S3, and S4 treatments, respectively. These results indicate that co-inoculation with PGPB mitigated the negative effects of salinity on root colonization. The root and soil glomalin contents increased as salinity increased. Root glomalin in plants inoculated by AMF+SR-PGPB was more than in a single inoculation of AMF under salt stress. This study highlights the potential application of salt-tolerant bacteria and AMF as effective strategies for enhancing plant growth and productivity in saline environments, contributing to sustainable agricultural practices in affected regions.

Keywords

Subjects


Aalipour, H, Nikbakht, A, Etemadi, N, MacDonald, JE. 2021. Co-inoculation of Arizona cypress with mycorrhizae and rhizobacteria affects biomass, nutrient status, water-use efficiency, and glomalin-related soil protein concentration. Urban For Urban Green., 60: 127050.
Adak, E., & Sengupta, S. 2023. Role of polyhalite in soil-plant nutrition studies. International Journal of Agriculture and Nutrition, 6(2), 32-34.
Akram, M. S., Ashraf, M., & Akram, N. A. 2009. Effectiveness of potassium sulfate in mitigating salt-induced adverse effects on different physio-biochemical attributes in sunflower (Helianthus annuus L.). Flora-Morphology, Distribution, Functional Ecology of Plants, 204(6), 471-483.
Alexander, DB., Zuberrer, DA. 1991. Use of chrome azurol S reagent to evaluate siderophore production by rhizobacteria. Biol Fertil Soils 12(1): 39-45.
Al-Garni, SM., Khan, MM., Bahieldin, A. 2019. Plant growth-promoting bacteria and silicon fertilizer enhance plant growth and salinity tolerance in Coriandrum sativum. J Plant Interact., 14: 386-396.
Animasaun, DA., Oyedeji, S., Joseph, GG., Adedibu, PA., Krishnamurthy, R. 2020. Sodium chloride stress induced differential growth, biomass yield, and phytochemical composition responses in the halophytic grass Aeluropus lagopoides L. West Afr J Appl Ecol., 28(2): 31-40.
Ansari, M., Shekari, F., Mohammadi, MH., Juhos, K., Végvári, G., Biró, B. 2019. Salt-tolerant plant growth-promoting bacteria enhanced salinity tolerance of salt-tolerant alfalfa (Medicago sativa L.) cultivars at high salinity. Acta Physiol Plant., 41: 195.
Arnon AN. 1967. Method of extraction of chlorophyll in the plants. Agron J., 23: 112-121
Ashfaq, M., Hassan, HM., Ghazali, AH., Ahmad, M. 2020. Halotolerant potassium solubilizing plant growth promoting rhizobacteria may improve potassium availability under saline conditions. Environ Monit Assess., 192: 697.
Barhoumi, Z. 2018. Physiological response of the facultative halophyte, Aeluropus littoralis, to different salt types and levels. Plant Biosyst 153(2): 298-305.
Barzegargolchini, B., Movafeghi, A., Dehestani, A., Mehrabanjoubani, P. 2017. Morphological and anatomical changes in stems of Aeluropus littoralis under salt stress. J Plant Mol Breed., 5(1): 40-48.
Begum, N., Qin, C., Ahanger, MA., Raza, S, Khan, MI., Ashraf, M., Ahmed, N., Zhang, L. 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci., 10: 1068.
Bradford, MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem., 72: 248-254.
Britto, D. T., & Kronzucker, H. J. 2008. Cellular mechanisms of potassium transport in plants. Physiologia plantarum, 133(4), 637-650.
Cakmak, I. 2005. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 168(4), 521-530.
Dashtebani, F., Hajiboland, R., Aliasgharzad, N. 2014. Characterization of salt-tolerance
mechanisms in mycorrhizal (Claroideoglomus etunicatum) halophytic grass,
Puccinellia distans. Acta Physiol Plant., 36: 1713–1726.
Debouba, M., Gouia, H., Suzuki, A., & Ghorbel, M. H. 2006. NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato “Lycopersicon esculentum” seedlings. Journal of plant physiology, 163(12), 1247-1258.
Dey G, Banerjee, P., Sharma, RK., Maity, JP., Etesami, H., Shaw, AK., Huang, YH., Huang, HB., Chen, CY. 2021. Management of phosphorus in salinity-stressed agriculture for sustainable crop production by salt-tolerant phosphate-solubilizing bacteria—A review. Agronomy., 11(8): 1552.
Diao, F., Dang, Z., Xu, J., Ding, S., Hao, B., Zhang, Z., Zhang, J., Wang, L., Guo, W. 2021. Effect of arbuscular mycorrhizal symbiosis onion homeostasis and salt tolerance-related gene expression in halophyte Suaeda salsa under salt treatments. Microbiol Res., 24: 126688.
Elhindi, KM., El-Din, AS., Elgorban, AM. 2017. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J Biol Sci., 24:170-179.
Fakhrfeshani, M., Shahriari-Ahmadi, F., Niazi, A., Moshtaghi, N., Zare-Mehrjerdi, M. 2015. The effect of salinity stress on Na+, K+ concentration, Na+/K+ ratio, electrolyte leakage and HKT expression profile in roots of Aeluropus littoralis. J Plant Mol Breed., 3(2): 1-10.
Feng, K., Cai, Z., Ding, T., Yan, H., Liu, X., Zhang, Z. 2019. Effects of potassium-solubulizing and photosynthetic bacteria on tolerance to salt stress in maize. J Appl Microbiol., 126(5): 1530-1540.
Filek, M., Walas, S., Mrowiec, H., Rudolphy-Skórska, E., Sieprawska, A., Biesaga-Kościelniak, J. 2012. Membrane permeability and micro- and macroelement accumulation in spring wheat cultivars during the short-term effect of salinity- and PEG-induced water stress. Acta Physiol Plant., 34: 985-995.
Flowers, T. J., Munns, R., & Colmer, T. D. 2015. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of botany, 115(3), 419-431.
Garcia, CL., Dattamudi, S., Chanda, S., Jayachandran, K. 2019. Effect of salinity stress and microbial inoculations on glomalin production and plant growth parameters of snap bean (Phaseolus vulgaris). Agronomy, 9(9): 545.
Gengmao, Z., Yu, H., Xing, S., Shihui, L., Quanmei, S., & Changhai, W. 2015. Salinity stress increases secondary metabolites and enzyme activity in safflower. Industrial crops and products, 64, 175-181.
Hajiboland, R., Dashtebani, F., Aliasgharzad, N. 2015. Physiological responses of halophytic C4 grass Aeluropus littoralis to salinity and arbuscular mycorrhizal fungi colonization. Photosynthetica., 53: 572-584.
Hashem, A., Abd_Allah, EF., Alqarawi, AA., Al-Huqail, AA., Wirth, S., Egamberdieva, D. 2016. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Microbiol., 7: 1089.
Jeon, JS, Lee, SS, Kim, HY, Ahn, TS, Song, HG. 2003. Plant growth promoting in soil by some inoculated microorganism. J Microbiol., 41(4): 271-276.
Kormanik PP, McGraw AC. 1982. Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: Schenck NC (ed) Methods and Principles of Mycorrhizal Research. American Phytopathological Society. pp.37-45.
Kutilek, M., Nielsen, DR. 1994. Soil Hydrology. Catena Verlag, Cremlingen.
Meena, VS., Maurya, BR., Verma, JP., Aeron, A., Kumar, A., Kim, K., Bajpai, VK. 2015. Potassium solubilizing rhizobacteria (KSR): Isolation, identification, and K-release dynamics from waste mica. Ecol Eng., 81:340-347.
Millner, PD., Kitt, DG. 1992. The Beltsville method for soilless production of
vesicular arbuscular mycorrhizal fungi. Mycorrhiza., 2: 9-15.
Moreira, H., Pereira, SI., Vega, A., Castro, PM., Marques, AP. 2020. Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity. J Environ Manag., 257: 109982.
Moshtaghi Nikou, M., Ramezani, M., Ali Amoozegar, M., Rasooli, M., Harirchi, S., Shahzadeh Fazeli, SA., Schumann, P., Spröer, C, Ventosa, A. 2015. Nocardia halotolerans sp. nov., a halotolerant actinomycete isolated from saline soil. Int J Syst Evol Microbiol., 65(9):3148-3154.
Oksana, O., Hermansah, H., Agustian, A., Syafrimen , S., Yasin, S. 2024. Soil sulfur dynamics and their role in plant growth and development. JURNAL AGRONOMI TANAMAN TROPIKA (JUATIKA), 6(3), 850-868.
Patten, CL., Glick, BR. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol., 68(8): 3795-3801.
Penrose, DM., Glick, BR. 2001. Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria. Can J Microbiol., 47(4): 368-372.
Praveen, A., & Singh, S. 2024. The role of potassium under salinity stress in crop plants. Cereal Research Communications, 52(2), 315-322.
Qin, S., Feng, WW., Zhang, YJ., Wang, TT., Xiong, YW., Xing, K. 2018. Diversity of bacterial microbiota of costal halophyte Limonium sinense and amelioration of salinity stress damage by symbiotic plant growth-promoting actinobacterium Glutamicibacter halophytocola KLBMP 5180. Appl Environ Microbiol., 84: e01533-18.
Rojas-Tapias, D., Moreno-Galván, A., Pardo-Díaz, S., Obando, M., Rivera, D., Bonilla, R. 2012. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol., 61: 264-272.
Rosier, CL., Hoye, AT., Rillig, MC. 2006. Glomalin-related soil protein: assessment of current detection and quantification tools. Soil Biol Biochem., 38: 2205-2211.
Shiferaw, B., Baker, DA. 1996. An evaluation of drought screening techniques for Eragrostis tef. Trop Sci., 36:74-85.
Solórzano-Acosta, R., Toro, M., Zúñiga-Dávila, D. 2023. Plant growth promoting bacteria and arbuscular mycorrhizae improve the growth of Persea americana var. Zutano under salt stress conditions. J Fungi., 9: 233.
Suarez C, Cardinale M, Ratering S, Steffens D, Jung S, Montoya AM, Geissler-Plaum R, Schnell S (2015) Plant growth-promoting effects of Hartmannibacter diazotrophicus on summer barley (Hordeum vulgare L.) under salt stress. Appl Soil Ecol., 95: 23-30.
Talbi Zribi, O., Mbarki, S., Metoui, O., Trabelsi, N., Zribi, F., Ksouri, R., Abdelly, C. 2020. Salinity and phosphorus availability differentially affect plant growth, leaf morphology, water relations, solutes accumulation and antioxidant capacity in Aeluropus littoralis. Plant Biosyst., 155(4): 935-943.
Wang, H., An T., Huang, D., Liu, R., Xu, B., Zhang, S., Deng, X., Siddique, KH., Chen, Y. 2021. Arbuscular mycorrhizal symbiosis alleviating salt stress in maize is associated with a decline in root-to-leaf gradient of Na+/K+ ration. BMC Plant Biol., 21: 457.
Wang, Y., Lin J., Huang, S., Zhang, L., Zhao, W., Yang, C. 2019. Isobaric tags for relative and absolute quantification-based proteomic analysis of Puccinellia tenuiflora inoculated with arbuscular mycorrhizal fungi reveal stress response mechanisms in alkali-degraded soil. Land Degrad Dev., 30: 1584-1598.
Wasaya, A., Affan, M., Ahmad Yasir, T., Mubeen, K., Rehman, H. U., Ali, M., ... & EL Sabagh, A. 2021. Foliar potassium sulfate application improved photosynthetic characteristics, water relations and seedling growth of drought-stressed maize. Atmosphere, 12(6), 663.
Wei, DD., Cheng, D., Liu, W.B., Liu, T., Yang, XH., Zheng, YH. 2016. Adequate potassium application enhances salt tolerance of moderate-halophyte Sophora alopecuroides. Plant Soil Environ 61: 364–370.
Wright SF, Franke-Snyder M, Morton JB, Upadhyaya A. 1996. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil., 181: 193-203.
Yañez-Yazlle, MF., Romano-Armada, N., Acreche, MM., Rajal, VB., Irazusta, V.P. 2021. Halotolerant bacteria isolated from extreme environments induce seed germination and growth of chia (Salvia hispanica L.) and quinoa (Chenopodium quinoa Willd.) under saline stress. Ecotoxicol Environ Saf., 218: 112273.
Yang, CX., Zhao, WN., Wang, Y.D .2019. Isolation and identification of three dominant arbuscular mycorrhizal fungi in rhizosphere of Puccinellia tenuiflora from saline-alkaline grassland of Songnen Plain. Sydowia., 71: 247–253.
Yasmin, H., Naeem, S., Bakhtawar, M., Jabeen, Z., Nosheen, A., Naz, R., Keyani, R., Mumtaz, S., Hassan, M.N. 2020. Halotolerant rhizobacteria Pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress. PLoS ONE., 15(4): e0231348.
Zhou, N., Zhao, S., Tian, CY. 2017. Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. FEMS Microbiol Lett., 364(11): fnx091.

Articles in Press, Accepted Manuscript
Available Online from 01 January 2024