Arzani, K. (2002). The position of pear breeding and culture in Iran: Introduction of some Asian pear (Pyrus serotina Rehd.) cultivars. Acta Horticulturae, 587(October 2002), 167–173. https://doi.org/10.17660/ActaHortic.2002.587.18
Arzani, K., Khoshghalb, H., Malakouti, M.-J., & Barzegar, M. (2008). Postharvest fruit physicochemical changes and properties of Asian (Pyrus serotina Rehd.) and European (Pyrus communis L.) pear cultivars. Horticulture Environment and Biotechnology, 49 (1), 244–252.
Arzani, K. (2019). Asian Pear. Postharvest Physiological Disorders in Fruits and Vegetables. First Edition. CRC Press, Taylor & Francis Group, London, United Kingdom & New York, USA, pp. 329-345.
Bell, R. L., Quamme, H. A., Layne, R. E. C., & Skirvin, R. M. (1996). Pears In: Janick J, Moore JN (eds) Fruit breeding, volume I: tree and tropical fruit. Wiley, New York.
Bennett, R. N., & Wallsgrove, R. M. (1994). Secondary metabolites in plant defense mechanisms. New Phytologist, 127(4), 617–633. https://doi.org/10.1111/j.1469-8137.1994.tb02968.x
Bexiga, F., Rodrigues, D., Guerra, R., Brázio, A., Balegas, T., Cavaco, A. M., Antunes, M. D., & Valente de Oliveira, J. (2017). A TSS classification study of ‘Rocha’ pear (Pyrus communis L.) based on non-invasive visible/near infra-red reflectance spectra. Postharvest Biology and Technology, 132(May), 23–30. https://doi.org/10.1016/j.postharvbio.2017.05.014
Brunetto, G., Melo, Gewellington Bastosde Melo, M., Quartieri, M., & Tagliavini, M. (2015). The Role of Mineral Nutrition on Yields and Fruit Quality in Grapevine, Pear, and Apple. Revista Brasileira de Fruticultura, 37(4), 1089–1104. https://doi.org/10.1590/0100-2945-103/15
Chang, S., Tan, C., Frankel, E. N., & Barrett, D. M. (2000). Low-density lipoprotein antioxidant activity of phenolic compounds and polyphenol oxidase activity in selected clingstone peach cultivars. Journal of Agricultural and Food Chemistry, 48(2), 147–151.
Chapman, H. D., & Pratt, P. F. (1962). Methods of analysis for soils, plants, and waters. Soil Science, 93(1), 68.
Chen, J. L., Yan, S., Feng, Z., Xiao, L., & Hu, X. S. (2006). Changes in the volatile compounds and chemical and physical properties of Yali pear (Pyrus bertschneideri Reld) during storage. Food Chemistry, 97(2), 248–255. https://doi.org/10.1016/j.foodchem.2005.03.044
Chen, J., Wang, Z., Wu, J., Wang, Q., & Hu, X. (2007). Chemical compositional characterization of eight pear cultivars grown in China. Food Chemistry, 104(1), 268–275. https://doi.org/10.1016/j.foodchem.2006.11.038
Chinnici, F., Spinabelli, U., Riponi, C., & Amati, A. (2005). Optimization of the determination of organic acids and sugars in fruit juices by ion-exclusion liquid chromatography. Journal of Food Composition and Analysis, 18(2–3), 121–130. https://doi.org/10.1016/j.jfca.2004.01.005
Colaric, M., Stampar, F., & Hudina, M. (2007). Content levels of various fruit metabolites in the “Conference” pear response to branch bending. Scientia Horticulturae, 113(3), 261–266. https://doi.org/10.1016/j.scienta.2007.03.016
Dar, M. A., Wani, J. A., Raina, S. K., Bhat, M. Y., & Malik, M. A. (2015). Relationship of leaf nutrient content with fruit yield and quality of pear. Journal of Environmental Biology, 36(3), 649–653.
De Araújo, F. F., de Paulo Farias, D., Neri-Numa, I. A., & Pastore, G. M. (2021). Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chemistry, 338, 127535. https://doi.org/10.1016/j.foodchem.2020.127535
De Paulo Farias, D., Neri-Numa, I. A., de Araújo, F. F., & Pastore, G. M. (2020). A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims. Food Chemistry, 306(October 2019), 125630. https://doi.org/10.1016/j.foodchem.2019.125630
Dong, Y., Guan, J. F., Ma, S. J., Liu, L. L., Feng, Y. X., & Cheng, Y. D. (2014). Calcium content and its correlated distribution with skin browning spot in bagged Huangguan pear. Protoplasma, 252(1), 165–171. https://doi.org/10.1007/s00709-014-0665-5
Duan, Y. X., Xu, Y., Wang, R., & Ma, C. H. (2019). Investigation and prevention of cork spot disorder in ‘Akizuki’ pear (Pyrus pyrifolia Nakai). HortScience, 54(3), 480–486. https://doi.org/10.21273/HORTSCI13775-18
Elmer, P., & Conn, N. (1982). Analytical methods for atomic absorption spectrophotometry. Perkin Elmer, Norwalk, CT.
Feng, Y., Cheng, H., Cheng, Y., Zhao, J., He, J., Li, N., ... & Guan, J. (2023). Chinese Traditional Pear Paste: Physicochemical Properties, Antioxidant Activities, and Quality Evaluation. Foods, 12(1), 187.
Han, S., Liu, H., Han, Y., He, Y., Nan, Y., Qu, W., & Rao, J. (2021). Effects of calcium treatment on malate metabolism and γ-aminobutyric acid (GABA) pathway in postharvest apple fruit. Food Chemistry, 334, 127479.
He, X., Zheng, S., Sheng, Y., Miao, T., Xu, J., Xu, W., Huang, K., & Zhao, C. (2021). Chlorogenic acid ameliorates obesity by preventing energy balance shifts in high-fat diet-induced obese mice. Journal of the Science of Food and Agriculture, 101(2), 631–637. https://doi.org/10.1002/jsfa.10675
Hosseinzadeh, H., & Nassiri-Asl, M. (2014). Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid. Journal of Endocrinological Investigation, 37(9), 783–788. https://doi.org/10.1007/s40618-014-0096-3
Izydorczyk, G., Ligas, B., Mikula, K., Witek-Krowiak, A., Moustakas, K., & Chojnacka, K. (2021). Biofortification of edible plants with selenium and iodine – A systematic literature review. Science of the Total Environment, 754, 141983. https://doi.org/10.1016/j.scitotenv.2020.141983
Jennings, A., MacGregor, A., Spector, T., & Cassidy, A. (2017). Higher dietary flavonoid intakes are associated with lower objectively measured body composition in women: Evidence from discordant monozygotic twins. American Journal of Clinical Nutrition, 105(3), 626–634. https://doi.org/10.3945/ajcn.116.144394
Jimenez-Garcia, S. N., Garcia-Mier, L., Vazquez-Cruz, M. A., Ramirez-Gomez, X. S., Guevara-Gonzalez, R. G., Garcia-Trejo, J. F., & Feregrino-Perez, A. A. (2021). Role of Natural Bio-active Compounds as Antidiabetic Agents. In Bioactive Natural Products for Pharmaceutical Applications (pp. 535–561). Springer.
Kadkhodaei, S., Arzani, K., Yadollahi, A., Karimzadeh, G., & Abdollahi, H. (2021). Genetic Diversity and Similarity of Asian and European Pears ( Pyrus Spp .) Revealed by Genome Size and Morphological Traits Prediction Genetic Diversity and Similarity of Asian and European Pears ( Pyrus. International Journal of Fruit Science, 21(1), 619–633. https://doi.org/10.1080/15538362.2021.1908201
Kawamura, T. (2000). Relationship Between Skin Color and Maturity of Japanese Pear `Housui'. Japanese Journal of Farm Work Research, 35(1), 33–38.
Lee, K. H., Cho, J. Y., Lee, H. J., Park, K. Y., Ma, Y. K., Lee, S. H., Cho, J. A., Kim, W. S., Park, K. H., & Moon, J. H. (2011). Isolation and identification of phenolic compounds from an Asian pear (Pyrus pyrifolia Nakai) fruit peel. Food Science and Biotechnology, 20(6), 1539–1545. https://doi.org/10.1007/s10068-011-0213-4
Li, X., Liao, W., Yu, H., Liu, M., Yuan, S., Tang, B., Yang, X., Song, Y., Huang, Y., & Cheng, S. (2017). Combined effects of fruit and vegetable intake and physical activity on the risk of metabolic syndrome among Chinese adults. PloS One, 12(11), e0188533.
Liaudanskas, M., Zymone, K., Viškelis, J., Klevinskas, A., & Janulis, V. (2017). Determination of the phenolic composition and antioxidant activity of pear extracts. Journal of Chemistry, 2017. https://doi.org/10.1155/2017/7856521
Lister, C. E., Lancaster, J. E., Sutton, K. H., & Walker, J. R. L. (1994). Developmental changes in the concentration and composition of flavonoids in the skin of a red and a green apple cultivar. Journal of the Science of Food and Agriculture, 64(2), 155–161.
Mainla, L., Moor, U., Karp, K., & Puessa, T. (2011). The effect of genotype and rootstock on polyphenol composition of selected apple cultivars in Estonia. Žemdirbystė= Agriculture, 98(1), 63–70.
Martínez, G., Regente, M., Jacobi, S., Del Rio, M., Pinedo, M., & de la Canal, L. (2017). Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pesticide Biochemistry and Physiology, 140, 30–35. https://doi.org/10.1016/j.pestbp.2017.05.012.
Mota, J. C., Almeida, P. P., Freitas, M. Q., Stockler-Pinto, M. B., & Guimarães, J. T. (2022). Far from being a simple question: The complexity between in vitro and in vivo responses from nutrients and bioactive compounds with antioxidant potential. Food Chemistry, 134351.
Monte-Corvo, L., Goulão, L., & Oliveira, C. (2001). ISSR analysis of cultivars of pear and suitability of molecular markers for clone discrimination. Journal of the American Society for Horticultural Science, 126(5), 517–522. https://doi.org/10.21273/jashs.126.5.517.
Muvhulawa, N., Dludla, P. V., Ziqubu, K., Mthembu, S. X., Mthiyane, F., Nkambule, B. B., & Mazibuko-Mbeje, S. E. (2022). Rutin ameliorates inflammation and improves metabolic function: A comprehensive analysis of scientific literature. Pharmacological Research, 106163.
Nazir, N., Nisar, S., Mubarak, S., Khalil, A., Javeed, K., Banerjee, S., Kour, J., & Nayak, G. A. (2020). Pear. In Antioxidants in Fruits: Properties and Health Benefits (pp. 435–447). Springer.
Nwafor, E. O., Lu, P., Zhang, Y., Liu, R., Peng, H., Xing, B., ... & Liu, Z. (2022). Chlorogenic acid: Potential source of natural drugs for the therapeutics of fibrosis and cancer. Translational Oncology, 15(1), 101294.
Ozturk, I., Ercisli, S., Kalkan, F., & Demir, B. (2009). Some chemical and physicomechanical properties of pear cultivars. Journal of Biotechnology, 8(4), 687–693.
Pestana, M., Correia, P. J., de Varennes, A., Abadía, J., & Faria, E. A. (2001). Effectiveness of different foliar iron applications to control iron in orange trees grown on calcareous soil. Journal of Plant Nutrition, 24(4–5), 613–622. https://doi.org/10.1081/PLN-100103656
Rezaeirad, D., Bakhshi, D., Ghasemnezhad, M., & Lahiji, H. S. (2013). Evaluation of some quantitative and qualitative characteristics of local pears (Pyrus sp.) in the north of Iran. International Journal of Agriculture and Crop Sciences (IJACS), 5(8), 882–887.
Sanchez, M. B., Miranda-Perez, E., Verjan, J. C. G., de los Angeles Fortis Barrera, M., Perez-Ramos, J., & Alarcon-Aguilar, F. J. (2017). The potential of the chlorogenic acid as a multitarget agent: Insulin-secretagogue and PPAR α/γ dual agonist. Biomedicine and Pharmacotherapy, 94, 169–175. https://doi.org/10.1016/j.biopha.2017.07.086
Shahid, M., Saleem, M. F., Saleem, A., Raza, M. A. S., Kashif, M., Shakoor, A., & Sarwar, M. (2019). Exogenous Potassium–Instigated Biochemical Regulations Confer Terminal Heat Tolerance in Wheat. Journal of Soil Science and Plant Nutrition, 19(1), 137–147. https://doi.org/10.1007/s42729-019-00020-3
Singh, A., Chaubey, R., Srivastava, S., Kushwaha, S., & Pandey, R. (2021). Beneficial Root Microbiota: Transmogrifiers of Secondary Metabolism in Plants. In Emerging Trends in Plant Pathology (pp. 343–365). Springer.
Song, K., Kim, S., Na, J. Y., Park, J. H., Kim, J. K., Kim, J. H., & Kwon, J. (2014). Rutin attenuates ethanol-induced neurotoxicity in hippocampal neuronal cells by increasing aldehyde dehydrogenase 2. Food and Chemical Toxicology, 72, 228–233. https://doi.org/10.1016/j.fct.2014.07.028
Tatari, M., Ghasemi, A., & Mousavi, A. (2020). Diversity of Local and Wild Pear Germplasm in Central Regions of Iran. International Journal of Fruit Science, 20(S2), S432–S447. https://doi.org/10.1080/15538362.2020.1738974
Tewari, R. K., Yadav, N., Gupta, R., & Kumar, P. (2021). Oxidative Stress Under Macronutrient Deficiency in Plants. Journal of Soil Science and Plant Nutrition, 21(1), 832–859. https://doi.org/10.1007/s42729-020-00405-9
Tiwari, D. C., Bahukhandi, A., Durgapal, M., & Bhatt, I. D. (2023). Pyrus spp.(Pyrus pashia Buch.-Ham. ex D. Don, Pyrus pyrifolia (Burm. f) Nakai). In Himalayan Fruits and Berries (pp. 331-341). Academic Press.
Waling, I., Van Vark, W., Houba, V. J. G., & Van der Lee, J. J. (1989). Soil and plant analysis, a series of syllabi: Part 7. Plant Analysis ProceduresWageningen Agriculture University.
Wang, Y., & Arzani, K. (2019). European Pear. Postharvest Physiological Disorders in Fruits and Vegetables. First Edition. CRC Press, Taylor & Francis Group, London, United Kingdom & New York, USA, pp. 305-328.
Wang, Z., Barrow, C. J., Dunshea, F. R., & Suleria, H. A. R. (2021). A comparative investigation on phenolic composition, characterization, and antioxidant potentials of five different Australian-grown pear varieties. Antioxidants, 10(2), 1–22. https://doi.org/10.3390/antiox10020151
Wójcik, P., & Popińska, W. (2009). Response of Lukasovka pear trees to foliar zinc sprays. Journal of Elemntology, 14(1/2009), 181–188. https://doi.org/10.5601/jelem.2009.14.1.19
Wojcik, P., & Wojcik, M. (2003). Effects of boron fertilization on “Conference” pear tree vigor, nutrition, and fruit yield and storability. Plant and Soil, 256(2), 413–421. https://doi.org/10.1023/A:1026126724095
Yadegari, P., and Arzani, K. (2023). The importance, conservation, maintenance, and propagation of European pear (Pyrus communis L.) A95 promising genotype. Thirteen National Horticultural Science Congress of Iran (IrHC2023), September 18-21, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran, Congres Proceeding, Pages: 3186-3189.