Fruit Biochemical and Nutritional Properties of Some Asian and European Pears (Pyrus spp.) Grown under Tehran Environmental Conditions

Document Type : Original Research

Authors
Department of Horticultural Science, College of Agriculture, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
Abstract
Pear is one of the most important pome fruits in the world fruit market with a high nutritional value. This study was performed to determine the phenolic compounds and some chemical properties of the fruit flesh and peel of 12 Asian and European pears. Chlorogenic acid and rutin were found as the important phenolic compounds in the fruit peel, which were measured using HPLC. Results showed fruit Titratable Acidity (TA, 0.17-0.53%(, Total Soluble Solids (TSS, 13.33-17.33 °Brix), firmness (1.7-2.75, kg cm-2), and color parameters. The highest L* value was observed in KS7 (40.55), while the lowest was in KS12 (14.26) and KS13 (14.78). Additionally, the study assessed the nutrient and total phenol content of fruit samples. The `Shahmiveh’ cultivar displayed the highest total phenol content (638 mg 100 g-1 FW), while the KS7 cultivar had the lowest (420 mg 100 g-1 FW). Potassium was the most abundant nutrient (1.16 mg 100 g-1 DW), followed by nitrogen and calcium contents. As the total phenol increased, so did the amount of rutin. Principal Components Analysis (PCA) of all data showed that the European and Asian pears studied cultivars and genotypes were different in terms of most of the studied biochemical traits, and significant relationships were observed between some traits. Besides, the obtained results help in the selection of the best pear cultivars or genotypes in terms of the highest phenolic content and nutrients, both for fresh consumption and in the juice industry.
 

Keywords

Subjects


1.       Arzani, K. 2002. The Position of Pear Breeding and Culture in Iran: Introduction of Some Asian Pear (Pyrus serotina Rehd.) Cultivars. Acta Hortic., 587: 167–173.
2.       Arzani, K., Khoshghalb, H., Malakouti, M.-J. and Barzegar, M. 2008. Postharvest Fruit Physicochemical Changes and Properties of Asian (Pyrus serotina Rehd.) and European (Pyrus communis L.) Pear Cultivars. Hortic. Environ. Biotechnol., 49(1): 244–252.
3.       Arzani, K. 2019. Asian Pear. Postharvest Physiological Disorders in Fruits and Vegetables. First Edition. CRC Press, Taylor & Francis Group, London, United Kingdom & New York, USA, pp. 329-345.
4.       Arzani, K. 2021. The National Asian Pear (Pyrus serotina Rehd) Project in Iran: Compatibility and Commercial Studies of Introduced Cultivars. Acta Hortic., 1315: 91-98
Bell, R. L., Quamme, H. A., Layne, R. E. C. and Skirvin, R. M. 1996. Pears In: "Fruit Breeding, Volume I: Tree and Tropical Fruit", (Eds.): Janick J. and Moore, J. N. Wiley, New York.
5.       Bennett, R. N. and Wallsgrove, R. M. 1994. Secondary Metabolites in Plant Defense Mechanisms. New Phytol., 127(4): 617–633.
6.       Bexiga, F., Rodrigues, D., Guerra, R., Brázio, A., Balegas, T., Cavaco, A. M., Antunes, M. D. and Valente de Oliveira, J. 2017. A TSS Classification Study of ‘Rocha’ Pear (Pyrus communis L.) Based on Non-Invasive Visible/Near Infra-Red Reflectance Spectra. Postharvest Biol. Technol., 132: 23–30.
7.       Brunetto, G., Melo, Gewellington Bastosde Melo, M., Quartieri, M. and Tagliavini, M. 2015. The Role of Mineral Nutrition on Yields and Fruit Quality in Grapevine, Pear, and Apple. Rev. Bras. Frutic., 37(4): 1089–1104.
8.       Chang, S., Tan, C., Frankel, E. N. and Barrett, D. M. 2000. Low-Density Lipoprotein Antioxidant Activity of Phenolic Compounds and Polyphenol Oxidase Activity in Selected Clingstone Peach Cultivars. J. Agric. Food Chem., 48(2): 147–151.
9.       Chapman, H. D. and Pratt, P. F. 1962. Methods of Analysis for Soils, Plants, and Waters. Soil Sci., 93(1): 68.
10.    Chen, J. L., Yan, S., Feng, Z., Xiao, L. and Hu, X. S. 2006. Changes in the Volatile Compounds and Chemical and Physical Properties of Yali Pear (Pyrus bertschneideri Reld) during Storage. Food Chem., 97(2): 248–255.
11.    Chen, J., Wang, Z., Wu, J., Wang, Q. and Hu, X. 2007. Chemical Compositional Characterization of Eight Pear Cultivars Grown in China. Food Chem., 104(1): 268–275.
12.    Chinnici, F., Spinabelli, U., Riponi, C. and Amati, A. 2005. Optimization of the Determination of Organic Acids and Sugars in Fruit Juices by Ion-Exclusion Liquid Chromatography. J. Food Compos. Anal., 18(2–3): 121–130.
13.    Colaric, M., Stampar, F. and Hudina, M. 2007. Content Levels of Various Fruit Metabolites in the “Conference” Pear Response to Branch Bending. Sci. Hortic., 113(3): 261–266.
14.    Dar, M. A., Wani, J. A., Raina, S. K., Bhat, M. Y. and Malik, M. A. 2015. Relationship of Leaf Nutrient Content with Fruit Yield and Quality of Pear. J. Environ. Biol., 36(3): 649–653.
15.    De Araújo, F. F., de Paulo Farias, D., Neri-Numa, I. A. and Pastore, G. M. 2021. Polyphenols and Their Applications: An Approach in Food Chemistry and Innovation Potential. Food Chem., 338: 127535.
16.    De Paulo Farias, D., Neri-Numa, I. A., de Araújo, F. F. and Pastore, G. M. 2020. A Critical Review of Some Fruit Trees from the Myrtaceae Family as Promising Sources for Food Applications with Functional Claims. Food Chem., 306: 125630.
17.    Dong, Y., Guan, J. F., Ma, S. J., Liu, L. L., Feng, Y. X. and Cheng, Y. D. 2014. Calcium Content and Its Correlated Distribution with Skin Browning Spot in Bagged Huangguan Pear. Protoplasma, 252(1): 165–171.
18.    Duan, Y. X., Xu, Y., Wang, R. and Ma, C. H. 2019. Investigation and Prevention of Cork Spot Disorder in ‘Akizuki’ pear (Pyrus pyrifolia Nakai). HortSci., 54(3): 480–486.
19.    Elmer, P. and Conn, N. 1982. Analytical Methods for Atomic Absorption Spectrophotometry. Perkin Elmer, Norwalk, CT.
20.    Fattahi, B., Arzani, K., Souri, M. K. and Barzegar, M. 2021. Morphological and Phytochemical Responses to Cadmium and Lead Stress in Coriander (Coriandrum sativum L.). Ind. Crops Prod., 171(1): 113979.
21.    Feng, Y., Cheng, H., Cheng, Y., Zhao, J., He, J., Li, N., Wang, J. and Guan, J. 2023. Chinese Traditional Pear Paste: Physicochemical Properties, Antioxidant Activities, and Quality Evaluation. Foods, 12(1): 187.
22.    Han, S., Liu, H., Han, Y., He, Y., Nan, Y., Qu, W. and Rao, J. 2021. Effects of Calcium Treatment on Malate Metabolism and γ-Aminobutyric Acid (GABA) Pathway in Postharvest Apple Fruit. Food Chem., 334: 127479.
23.    He, X., Zheng, S., Sheng, Y., Miao, T., Xu, J., Xu, W., Huang, K. and Zhao, C. 2021. Chlorogenic Acid Ameliorates Obesity by Preventing Energy Balance Shifts in High-Fat Diet-Induced Obese Mice. J. Sci. Food Agric., 101(2): 631–637.
24.    Hosseinzadeh, H. and Nassiri-Asl, M. 2014. Review of the Protective Effects of Rutin on the Metabolic Function as an Important Dietary Flavonoid. J. Endocrinol. Investig., 37(9): 783–788.
25.      Izydorczyk, G., Ligas, B., Mikula, K., Witek-Krowiak, A., Moustakas, K. and Chojnacka, K. 2021. Biofortification of Edible Plants with Selenium and Iodine – A Systematic Literature Review. Sci. Total Environ., 754: 141983.
26.    Jennings, A., MacGregor, A., Spector, T. and Cassidy, A. 2017. Higher Dietary Flavonoid Intakes Are Associated with Lower Objectively Measured Body Composition in Women: Evidence from Discordant Monozygotic Twins. Am. J. Clin. Nutr., 105(3): 626–634.
27.    Jimenez-Garcia, S. N., Garcia-Mier, L., Vazquez-Cruz, M. A., Ramirez-Gomez, X. S., Guevara-Gonzalez, R. G., Garcia-Trejo, J. F. and Feregrino-Perez, A. A. 2021. Role of Natural Bio-Active Compounds as Antidiabetic Agents. In: "Bioactive Natural Products for Pharmaceutical Applications". Springer, PP. 535–561.
28.    Kadkhodaei, S., Arzani, K., Yadollahi, A., Karimzadeh, G. and Abdollahi, H. 2021. Genetic Diversity and Similarity of Asian and European Pears ( Pyrus Spp .) Revealed by Genome Size and Morphological Traits Prediction Genetic Diversity and Similarity of Asian and European Pears ( Pyrus). Int. J. Fruit Sci., 21(1): 619–633.
29.    Kawamura, T. 2000. Relationship Between Skin Color and Maturity of Japanese Pear `Housui'. Jp. J. Farm Work Res., 35(1): 33–38.
30.    Lee, K. H., Cho, J. Y., Lee, H. J., Park, K. Y., Ma, Y. K., Lee, S. H., Cho, J. A., Kim, W. S., Park, K. H. and Moon, J. H. 2011. Isolation and Identification of Phenolic Compounds from an Asian Pear (Pyrus pyrifolia Nakai) Fruit Peel. Food Sci. Biotechnol., 20(6): 1539–1545.
31.    Li, X., Liao, W., Yu, H., Liu, M., Yuan, S., Tang, B., Yang, X., Song, Y., Huang, Y. and Cheng, S. 2017. Combined Effects of Fruit and Vegetable Intake and Physical Activity on the Risk of Metabolic Syndrome among Chinese Adults. PloS One, 12(11): e0188533.
32.    Liaudanskas, M., Zymone, K., Viškelis, J., Klevinskas, A. and Janulis, V. 2017. Determination of the Phenolic Composition and Antioxidant Activity of Pear Extracts. J. Chem., Volume 2017, Article ID 7856521, 9 PP.
33.    Lin, L. Z. and Harnly, J. H. 2008. Phenolic Compounds and Chromatographic Profiles of Pear Skins (Pyrus spp.). J. Agric. Food Chem., 56: 9094-9101.
34.    Lister, C. E., Lancaster, J. E., Sutton, K. H. and Walker, J. R. L. 1994. Developmental Changes in the Concentration and Composition of Flavonoids in the Skin of a Red and a Green Apple Cultivar. J. Sci. Food Agric., 64(2): 155–161.
35.    Maghdouri, M., Arzani, K. and Bakhshi, D. 2015. Phenolic Compounds and Antioxidant Activity of Some Asian Pears (Pyrus serotina Rehd.) Cultivars under Tehran Climatic Conditions. Seed Plant Prod. J., 30(3): 315-326. (in Persian)
36.    Mainla, L., Moor, U., Karp, K. and Puessa, T. 2011. The Effect of Genotype and Rootstock on Polyphenol Composition of Selected Apple Cultivars in Estonia. Žemdirbystė (Agriculture), 98(1): 63–70.
37.    Maleki Asayesh, Z., Arzani, K., Mokhtassi-Bidgoli, A. and Abdollahi, H. 2023. Enzymatic and Non-Enzymatic Response of Grafted and Ungrafted Young European Pear (Pyrus communis L.) Trees to Drought Stress. Sci. Hortic., 310: 111745.
38.    Martínez, G., Regente, M., Jacobi, S., Del Rio, M., Pinedo, M. and de la Canal, L. 2017. Chlorogenic Acid is a Fungicide Active against Phytopathogenic Fungi. Pestic. Biochem. Physiol., 140: 30–35.
39.    Mota, J. C., Almeida, P. P., Freitas, M. Q., Stockler-Pinto, M. B. and Guimarães, J. T. 2022. Far from Being a Simple Question: The Complexity between in Vitro and in Vivo Responses from Nutrients and Bioactive Compounds with Antioxidant Potential. Food Chem., 402: 1-16.
40.    Monte-Corvo, L., Goulão, L. and Oliveira, C. 2001. ISSR Analysis of Cultivars of Pear and Suitability of Molecular Markers for Clone Discrimination. J. Am. Soc. Hortic. Sci., 126(5): 517–522.
41.    Muvhulawa, N., Dludla, P. V., Ziqubu, K., Mthembu, S. X., Mthiyane, F., Nkambule, B. B. and Mazibuko-Mbeje, S. E. 2022. Rutin Ameliorates Inflammation and Improves Metabolic Function: A Comprehensive Analysis of Scientific Literature. Pharmacol. Res., 178: 106163.
42.    Najafzadeh, N. and Arzani, K. 2015. Superior Growth Characteristics, Yield, and Fruit Quality in Promising European Pear (Pyrus communis L.) Chance Seedlings in Iran. J. Agr. Sci. Tech., 17(2): 427-442.
43.    Nazir, N., Nisar, S., Mubarak, S., Khalil, A., Javeed, K., Banerjee, S., Kour, J. and Nayak, G. A. 2020. Pear. In: "Antioxidants in Fruits: Properties and Health Benefits". Springer, PP. 435–447.
44.    Nwafor, E. O., Lu, P., Zhang, Y., Liu, R., Peng, H., Xing, B., Liu, Y., Li, Z., Zhang, K., Zhang, Y. and Liu, Z. 2022. Chlorogenic Acid: Potential Source of Natural Drugs for the Therapeutics of Fibrosis and Cancer. Translat. Oncol., 15(1): 101294.
45.    Ozturk, I., Ercisli, S., Kalkan, F. and Demir, B. 2009. Some Chemical and Physicomechanical Properties of Pear Cultivars. J. Biotechnol., 8(4): 687–693.
46.    Pestana, M., Correia, P. J., de Varennes, A., Abadía, J. and Faria, E. A. 2001. Effectiveness of Different Foliar Iron Applications to Control Iron in Orange Trees Grown on Calcareous Soil. J. Plant Nutr., 24(4–5): 613–622.
47.    Rezaeirad, D., Bakhshi, D., Ghasemnezhad, M. and Lahiji, H. S. 2013. Evaluation of Some Quantitative and Qualitative Characteristics of Local Pears (Pyrus sp.) in the North of Iran. Int. J. Agric. Crop Sci.(IJACS), 5(8): 882–887.
48.    Sanchez, M. B., Miranda-Perez, E., Verjan, J. C. G., de los Angeles Fortis Barrera, M., Perez-Ramos, J. and Alarcon-Aguilar, F. J. 2017. The Potential of the Chlorogenic Acid as a Multitarget Agent: Insulin-Secretagogue and PPAR α/γ Dual Agonist. Biomed. Pharmacother., 94: 169–175.
49.    Shahid, M., Saleem, M. F., Saleem, A., Raza, M. A. S., Kashif, M., Shakoor, A. and Sarwar, M. 2019. Exogenous Potassium–Instigated Biochemical Regulations Confer Terminal Heat Tolerance in Wheat. J. Soil Sci. Plant Nutr. 19(1): 137–147.
   50. Singh, A., Chaubey, R., Srivastava, S., Kushwaha, S. and Pandey, R. 2021. Beneficial Root Microbiota: Transmogrifiers of Secondary Metabolism in Plants. In: "Emerging Trends in Plant Pathology". Springer, PP. 343–365.
  51. Song, K., Kim, S., Na, J. Y., Park, J. H., Kim, J. K., Kim, J. H. and Kwon, J. 2014. Rutin Attenuates Ethanol-Induced Neurotoxicity in Hippocampal Neuronal Cells by Increasing Aldehyde Dehydrogenase 2. Food Chem. Toxicol., 72: 228–233.
  52. Tatari, M., Ghasemi, A. and Mousavi, A. 2020. Diversity of Local and Wild Pear Germplasm in Central Regions of Iran. Int. J. Fruit Sci., 20(S2): S432–S447.
  53. Tewari, R. K., Yadav, N., Gupta, R. and Kumar, P. 2021. Oxidative Stress Under Macronutrient Deficiency in Plants. J. Soil Sci. Plant Nutr., 21(1): 832–859.
 54. Tiwari, D. C., Bahukhandi, A., Durgapal, M. and Bhatt, I. D. 2023. Pyrus spp. [Pyrus pashia Buch. -Ham. ex D. Don, Pyrus pyrifolia (Burm. f) Nakai]. In: "Himalayan Fruits and Berries". Academic Press, PP. 331-341.
55. Waling, I., Van Vark, W., Houba, V. J. G. and Van der Lee, J. J. 1989. Soil and Plant Analysis, a Series of Syllabi. Part 7: Plant Analysis. Procedures Wageningen Agriculture University.
56. Wang, Y. and Arzani, K. 2019. European Pear. In: "Postharvest Physiological Disorders in Fruits and Vegetables". First Edition. CRC Press, Taylor & Francis Group, London, United Kingdom & New York, USA, PP. 305-328.
57. Wang, Z., Barrow, C. J., Dunshea, F. R. and Suleria, H. A. R. 2021. A Comparative Investigation on Phenolic Composition, Characterization, and Antioxidant Potentials of Five Different Australian-Grown Pear Varieties. Antioxidants, 10(2): 1–22.
  58. Wójcik, P. and Popińska, W. 2009. Response of Lukasovka Pear Trees to Foliar Zinc Sprays. J. Elementol., 14(1): 181–188.
  59. Wojcik, P. and Wojcik, M. 2003. Effects of Boron Fertilization on “Conference” Pear Tree Vigor, Nutrition, and Fruit Yield and Storability. Plant Soil, 256(2): 413–421.
  60. Yadegari, P. and Arzani, K. 2023. The Importance, Conservation, Maintenance, and Propagation of European Pear (Pyrus communis L.) A95 Promising Genotype. Thirteen National Horticultural Science Congress of Iran (IrHC2023), Congres Proceeding, September 18-21, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran, PP. 3186-3189.