Exogenous Salicylic Acid Enhances Strawberry Resistance to Crown Rot

Document Type : Original Research

Authors
College of Horticulture and Gardening, Yangtze University, 434025 Jingzhou, P. R. China.
Abstract
Salicylic Acid (SA) contribution to mitigating strawberry crown rot remains unclear due to the microbial isolate-specific sensitivity and cultivar/tissue-specific responses in strawberries. In this study, we aimed to investigate how exogenous supply of SA influenced crown rot in strawberry. Exogenous SA application significantly reduced C. siamense infection in strawberry crowns, evidenced by the lesion size and pathological analysis. Transcriptomic data showed that for each sample of SA pretreatment and mock, owing to nearly 50 million reads, the ratio of Q20 ranged from 98 to 99%, and 91.63-94.29% of the reads mapped to the reference genome. The SA pretreatment up-regulated genes encoding MLO-like protein 2, receptor-like kinase, peroxidase, and caffeic acid 3-O-methyltransferase involved in lignin biosynthesis. The SA pretreatment also down-regulated chalcone isomerase, naringenin 3-dioxygenase, bifunctional dihydroflavonol 4-reductase, anthocyanidin synthase, and anthocyanidin reductase expressions involved in flavonoid biosynthesis during C. siamense infection. Consistent with gene expression changes, the SA pretreatment remarkably enhanced peroxidase activity and lignin content and decreased flavonoid content and chalcone isomerase activity after C. siamense inoculation. The results suggest that exogenous SA enhanced strawberry resistance to crown rot caused by C. siamense by up-regulating defense-related genes and lignin biosynthesis.

Keywords

Subjects


1.       Amil-Ruiz, F., Garrido-Gala, J., Gadea, J., Blanco-Portales, R., Muñoz-Mérida, A., Trelles, O., Santos, B. D. L., Arroyo, F. T., Aguado-Puig, A., Romero, F., Mercado, J., Pliego-Alfaro, F., Muñoz-Blanco, J. and Caballero, J. L. 2016. Partial Activation of SA-and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum interaction. Front. Plant Sci., 7: 1036.
2.       Bonawitz, N. D. and Chapple, C. 2010. The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu. Rev. Genet., 44: 337–363.
3.       Cesarino, I. 2019. Structural Features and Regulation of Lignin Deposited upon Biotic and Abiotic Stresses. Curr. Opin. Biotechol., 56: 209–214.
4.       Daw, B. D., Zhang, L. H. and Wang, Z. Z. 2008. Salicylic Acid Enhances Antifungal Resistance to Magnaporthe grisea in Rice Plants. Australas. Plant Pathol., 37: 637–644.
5.       De Kesel, J., Conrath, U., Flors, V., Luna, E., Mageroy, M. H., Mauch-Mani, B., Pastor, V., Pozo, M. J., Pieterse, C. M. J., Ton, J. and Kyndt, T. 2021. The Induced Resistance Lexicon: Do's and Don’ts. Trends Plant Sci., 26: 685–691.
6.       Dempsey, D. M. A. and Klessig, D. F. 2012. SOS–too Many Signals for Systemic Acquired Resistance? Trends Plant Sci., 17: 538–545.
7.       Desmedt, W, Jonckheere, W, Nguyen, V. H., Ameye, M., De Zutter, N., de Kock, K., Debode, J., Leeuwen, T. V., Audenaert, K., Vanholme, B. and Kyndt, T. 2021. The Phenylpropanoid Pathway Inhibitor Piperonylic Acid Induces Broad-Spectrum Pest and Disease Resistance in Plants. Plant Cell Environ., 44: 3122–3139.
8.       Esmailzadeh, M. and Soleimani, M. J. 2008. Exogenous Applications of Salicylic Acid for Inducing Systematic Acquired Resistance against Tomato Stem Canker Disease. J. Biol. Sci., 8: 1039–1044.
9.       Grellet-Bournonville, C. F., Martinez-Zamora, M. G., Castagnaro, A. P. and Díaz-Ricci, J. C. 2012. Temporal Accumulation of Salicylic Acid Activates the Defense Response against Colletotrichum in Strawberry. Plant Physiol. Biochem., 54: 10–16.
10.    He, C., Duan, K., Zhang, L. Q., Zhang, L., Song, L. L., Yang, J., Zou, X., Wang, Y. X. and Gao, Q. H. 2019. Fast Quenching the Burst of Host Salicylic Acid is Common in Early Strawberry/Colletotrichum fructicola Interaction. Phytopathology, 109: 531–541.
11.    Hou, J., Ai, M., Li, J., Cui, X., Liu, Y. and Yang, Q. 2024. Exogenous Salicylic Acid Treatment Enhances the Disease Resistance of Panax vietnamensis by Regulating Secondary Metabolite Production. Front Plant Sci., 15: 1428272.
12.    Hou, S., Liu, Z., Li, Y., Yang, M., Hou, S., Han, Y., Zhao, Y. and Sun, Z. 2023. Exogenous Salicylic Acid Enhanced Resistance of Foxtail Millet (Setaria italica) to Sclerospora graminicolaPlant Growth Regul., 99: 35–44.
13.    Huang, J., Gu, M., Lai, Z., Fan, B., Shi, K., Zhou, Y. H., Yu, J. Q. and Chen, Z. 2010. Functional Analysis of the Arabidopsis PAL Gene Family in Plant Growth, Development, and Response to Environmental Stress. Plant Physiol., 153: 1526–1538.
14.    Jendoubi, W., Harbaoui, K. and Hamada, W. 2015. Salicylic Acid-Induced Resistance against Fusarium oxysporum f. s. pradicis lycopercisi in Hydroponic Grown Tomato Plants. J. New Sci., 21: 985–995.
15.    Ji, Y., Li, X., Gao, Q. H., Geng, C. and Duan, K. 2022. Colletotrichum Species Pathogenic to Strawberry: Discovery History, Global Diversity, Prevalence in China, and the Host Range of Top Two Species. Phytopathol. Res., 4: 42.
16.    Kaltdorf, M. and Naseem, M. 2013. How Many Salicylic Acid Receptors Does a Plant Cell Need? Sci. Signal., 6: jc3–jc3.
17.    Koo, Y. M., Heo, A. Y. and Choi, H. W. 2020. Salicylic Acid as a Safe Plant Protector and Growth Regulator. Plant Pathol. J., 36: 1.
18.    Lee, M. H., Jeon, H. S., Kim, S. H., Chung, J. H., Roppolo, D., Lee, H. J., Cho, H. J., Tobimatsu, Y., Ralph, J. and Park, O. K. 2019. Lignin‐Based Barrier Restricts Pathogens to the Infection Site and Confers Resistance in Plants. EMBO J., 38: e101948.
19.    Li, P., Ruan, Z., Fei, Z., Yan, J. and Tang, G. 2021. Integrated Transcriptome and Metabolome Analysis Revealed that Flavonoid Biosynthesis May Dominate the Resistance of Zanthoxylum bungeanum against Stem Canker. J. Agric. Food Chem., 69: 6360–6378.
20.    Li, X., Zhen, R., Luo, C. and Shu, B. 2023. Exogenous Piperonylic Acid and p-Coumaric Acid Differentially Influence Crown Rot Caused by Colletotrichum siamense in Octoploid Strawberries by Regulating Phenylpropanoid, Flavonoid, and Lignin Metabolism. J. Hortic. Sci. Biotechnol., 98: 540–550.
21.    Lu, X., Chen, G., Ma, L., Zhang, C., Yan, H., Bao, J., Nai, G., Wang, W., Chen, B., Ma, S. and Li, S. 2023. Integrated Transcriptome and Metabolome Analysis Reveals Antioxidant Machinery in Grapevine Exposed to Salt and Alkali Stress. Physiol. Plan.175: e13950.
22.    Luo, C., Hu, Y. Y. and Shu, B. 2021. Characterization of Colletotrichum siamense Causing Crown Rot of Strawberry in Jingzhou, Hubei Province. Not. Bot. Horti Agrobot. Cluj-Napoca, 49: 1-11.
23.    Luo, C., Sun, Q., Zhang, F., Zhang, D., Liu, C., Wu, Q. and Shu, B. 2020. Genome-Wide Identification and Expression Analysis of the Citrus Malectin Domain-Containing Receptor-Like Kinases in Response to Arbuscular Mycorrhizal Fungi Colonization and Drought. Hortic. Environ. Biotechnol., 61: 891–901.
24.    Ning, J., He, W., Wu, L., Chang, L., Hu, M., Fu, Y., Liu, F., Sun, H., Gu, P., Ndjiondjop, M., Sun, C. and Zhu, Z. 2023. The MYB Transcription Factor Seed Shattering 11 Controls Seed Shattering by Repressing Lignin Synthesis in African Rice. Plant Biotechnol. J.21: 931-942.
25.    Onohata, T. and Gomi, K. 2020. Overexpression of Jasmonate-Responsive OsbHLH034 in Rice Results in the Induction of Bacterial Blight Resistance via an Increase in Lignin Biosynthesis. Plant Cell Rep., 39: 1175–1184.
26.    Pokotylo, I., Hodges, M., Kravets, V. and Ruelland, E. 2022. A Ménage à Trois: Salicylic Acid, Growth Inhibition, and Immunity. Trends Plant Sci., 27: 460–471.
27.    Quentin, M., Allasia, V., Pegard, A., Allais, F., Ducrot, P. H., Favery, B., Levis, C., Martinet, S., Masur, C., Ponchet, M., Roby, D., Schlaich, N. L., Jouanin, L. and Keller, H. 2009. Imbalanced Lignin Biosynthesis Promotes the Sexual Reproduction of Homothallic Oomycete Pathogens. PLoS Pathog., 5(1): e1000264.
28.    Rao, X., Huang, X., Zhou, Z. and Lin, X. 2013. An Improvement of the 2ˆ (–Delta Delta CT) Method for Quantitative Real-Time Polymerase Chain Reaction Data Analysis. Biostatistics Bioinformatics Biomathematics3: 71.
29.    Saikia, R., Singh, T., Kumar, R., Srivastava, J., Srivastava, A. K., Singh, K. and Arora, D. K. 2003. Role of Salicylic Acid in Systemic Resistance Induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in Chickpea. Microbiol. Res., 158: 203–213.
30.    Saleem, M., Fariduddin, Q. and Castroverde, C. D. M. 2021. Salicylic Acid: A Key Regulator of Redox Signalling and Plant Immunity. Plant Physiol. Biochem., 168: 381–397.
31.    Sarbu, L. G., Bahrin, L. G., Babii, C., Stefan, M. and Birsa, M. L. 2019. Synthetic Flavonoids with Antimicrobial Activity: A Review. J. Appl. Microbiol., 127: 1282–1290.
32.    Shu, B., Hu, Y. Y. and Luo, C. 2022. The Metabolites Involved in Phenylpropanoid Biosynthesis Increase the Susceptibility of Octoploid Strawberry to Crown Rot caused by Colletotrichum siamenseSci. Hortic-Amsterdam., 306: 111447.
33.    Tronchet, M., Balagué, C., Kroj, T., Jouanin, L. and Roby, D. 2010. Cinnamyl Alcohol Dehydrogenases‐C and D, Key Enzymes in Lignin Biosynthesis, Play an Essential Role in Disease Resistance in Arabidopsis. Mol. Plant Pathol., 11: 83–92.
34.    Wang, J., Chen, S. H., Huang, Y. F. and Sun, S. 2006. Induced Resistance to Anthracnose of Camellia oleifera by Salicylic Acid. For. Res., 19: 629–632.
35.    Wang, Y. and Liu, J. H. 2012. Exogenous Treatment with Salicylic Acid Attenuates Occurrence of Citrus Canker in Susceptible Navel Orange (Citrus sinensis Osbeck). J. Plant Physiol., 169: 1143–1149.
36.    Wu, W., Ding, Y., Wei, W., Davis, R. E., Lee, I. M., Hammond, R. W. and Zhao, Y. 2012. Salicylic Acid‐Mediated Elicitation of Tomato Defence against Infection by Potato Purple Top Phytoplasma. Ann. Appl. Biol., 161: 36–45.
37.    Xiao, S., Hu, Q., Shen, J., Liu, S., Yang, Z., Chen, K., Klosterman, S. J., Javornik, B., Zhang, X. and Zhu, L. 2021. GhMYB4 Downregulates Lignin Biosynthesis and Enhances Cotton Resistance to Verticillium dahliaePlant Cell Rep.40: 735–751.
38.    Zhang, Q. Y., Zhang, L. Q., Song, L. L., Duan, K., Li, N., Wang, Y. X. and Gao, Q. H. 2016. The Different Interactions of Colletotrichum gloeosporioides with Two Strawberry Varieties and the Involvement of Salicylic Acid. Hortic. Res., 3(Article 16007): 1-10:
39.    Zhang, Y., Hu, Y., Wang, Z., Lin, X., Li, Z., Ren, Y. and Zhao, J. 2023. The Translocase of the Inner Mitochondrial Membrane 22-2 Is Required for Mitochondrial Membrane Function during Arabidopsis Seed Development. J. Exp. Bot.74: 4427-4448.
40.   Zhang, Y., Peng, X., Liu, Y., Li, Y., Luo, Y., Wang, X. and Tang, H. 2018. Evaluation of Suitable Reference Genes for qRT-PCR Normalization in Strawberry (Fragaria×ananassa) under Different Experimental Conditions. BMC Mol. Biol.19: 1-10.