1. Amil-Ruiz, F., Garrido-Gala, J., Gadea, J., Blanco-Portales, R., Muñoz-Mérida, A., Trelles, O., Santos, B. D. L., Arroyo, F. T., Aguado-Puig, A., Romero, F., Mercado, J., Pliego-Alfaro, F., Muñoz-Blanco, J. and Caballero, J. L. 2016. Partial Activation of SA-and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum interaction. Front. Plant Sci., 7: 1036.
2. Bonawitz, N. D. and Chapple, C. 2010. The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu. Rev. Genet., 44: 337–363.
3. Cesarino, I. 2019. Structural Features and Regulation of Lignin Deposited upon Biotic and Abiotic Stresses. Curr. Opin. Biotechol., 56: 209–214.
4. Daw, B. D., Zhang, L. H. and Wang, Z. Z. 2008. Salicylic Acid Enhances Antifungal Resistance to Magnaporthe grisea in Rice Plants. Australas. Plant Pathol., 37: 637–644.
5. De Kesel, J., Conrath, U., Flors, V., Luna, E., Mageroy, M. H., Mauch-Mani, B., Pastor, V., Pozo, M. J., Pieterse, C. M. J., Ton, J. and Kyndt, T. 2021. The Induced Resistance Lexicon: Do's and Don’ts. Trends Plant Sci., 26: 685–691.
6. Dempsey, D. M. A. and Klessig, D. F. 2012. SOS–too Many Signals for Systemic Acquired Resistance? Trends Plant Sci., 17: 538–545.
7. Desmedt, W, Jonckheere, W, Nguyen, V. H., Ameye, M., De Zutter, N., de Kock, K., Debode, J., Leeuwen, T. V., Audenaert, K., Vanholme, B. and Kyndt, T. 2021. The Phenylpropanoid Pathway Inhibitor Piperonylic Acid Induces Broad-Spectrum Pest and Disease Resistance in Plants. Plant Cell Environ., 44: 3122–3139.
8. Esmailzadeh, M. and Soleimani, M. J. 2008. Exogenous Applications of Salicylic Acid for Inducing Systematic Acquired Resistance against Tomato Stem Canker Disease. J. Biol. Sci., 8: 1039–1044.
9. Grellet-Bournonville, C. F., Martinez-Zamora, M. G., Castagnaro, A. P. and Díaz-Ricci, J. C. 2012. Temporal Accumulation of Salicylic Acid Activates the Defense Response against Colletotrichum in Strawberry. Plant Physiol. Biochem., 54: 10–16.
10. He, C., Duan, K., Zhang, L. Q., Zhang, L., Song, L. L., Yang, J., Zou, X., Wang, Y. X. and Gao, Q. H. 2019. Fast Quenching the Burst of Host Salicylic Acid is Common in Early Strawberry/Colletotrichum fructicola Interaction. Phytopathology, 109: 531–541.
11. Hou, J., Ai, M., Li, J., Cui, X., Liu, Y. and Yang, Q. 2024. Exogenous Salicylic Acid Treatment Enhances the Disease Resistance of Panax vietnamensis by Regulating Secondary Metabolite Production. Front Plant Sci., 15: 1428272.
12. Hou, S., Liu, Z., Li, Y., Yang, M., Hou, S., Han, Y., Zhao, Y. and Sun, Z. 2023. Exogenous Salicylic Acid Enhanced Resistance of Foxtail Millet (Setaria italica) to Sclerospora graminicola. Plant Growth Regul., 99: 35–44.
13. Huang, J., Gu, M., Lai, Z., Fan, B., Shi, K., Zhou, Y. H., Yu, J. Q. and Chen, Z. 2010. Functional Analysis of the Arabidopsis PAL Gene Family in Plant Growth, Development, and Response to Environmental Stress. Plant Physiol., 153: 1526–1538.
14. Jendoubi, W., Harbaoui, K. and Hamada, W. 2015. Salicylic Acid-Induced Resistance against Fusarium oxysporum f. s. pradicis lycopercisi in Hydroponic Grown Tomato Plants. J. New Sci., 21: 985–995.
15. Ji, Y., Li, X., Gao, Q. H., Geng, C. and Duan, K. 2022. Colletotrichum Species Pathogenic to Strawberry: Discovery History, Global Diversity, Prevalence in China, and the Host Range of Top Two Species. Phytopathol. Res., 4: 42.
16. Kaltdorf, M. and Naseem, M. 2013. How Many Salicylic Acid Receptors Does a Plant Cell Need? Sci. Signal., 6: jc3–jc3.
17. Koo, Y. M., Heo, A. Y. and Choi, H. W. 2020. Salicylic Acid as a Safe Plant Protector and Growth Regulator. Plant Pathol. J., 36: 1.
18. Lee, M. H., Jeon, H. S., Kim, S. H., Chung, J. H., Roppolo, D., Lee, H. J., Cho, H. J., Tobimatsu, Y., Ralph, J. and Park, O. K. 2019. Lignin‐Based Barrier Restricts Pathogens to the Infection Site and Confers Resistance in Plants. EMBO J., 38: e101948.
19. Li, P., Ruan, Z., Fei, Z., Yan, J. and Tang, G. 2021. Integrated Transcriptome and Metabolome Analysis Revealed that Flavonoid Biosynthesis May Dominate the Resistance of Zanthoxylum bungeanum against Stem Canker. J. Agric. Food Chem., 69: 6360–6378.
20. Li, X., Zhen, R., Luo, C. and Shu, B. 2023. Exogenous Piperonylic Acid and p-Coumaric Acid Differentially Influence Crown Rot Caused by Colletotrichum siamense in Octoploid Strawberries by Regulating Phenylpropanoid, Flavonoid, and Lignin Metabolism. J. Hortic. Sci. Biotechnol., 98: 540–550.
21. Lu, X., Chen, G., Ma, L., Zhang, C., Yan, H., Bao, J., Nai, G., Wang, W., Chen, B., Ma, S. and Li, S. 2023. Integrated Transcriptome and Metabolome Analysis Reveals Antioxidant Machinery in Grapevine Exposed to Salt and Alkali Stress. Physiol. Plan., 175: e13950.
22. Luo, C., Hu, Y. Y. and Shu, B. 2021. Characterization of Colletotrichum siamense Causing Crown Rot of Strawberry in Jingzhou, Hubei Province. Not. Bot. Horti Agrobot. Cluj-Napoca, 49: 1-11.
23. Luo, C., Sun, Q., Zhang, F., Zhang, D., Liu, C., Wu, Q. and Shu, B. 2020. Genome-Wide Identification and Expression Analysis of the Citrus Malectin Domain-Containing Receptor-Like Kinases in Response to Arbuscular Mycorrhizal Fungi Colonization and Drought. Hortic. Environ. Biotechnol., 61: 891–901.
24. Ning, J., He, W., Wu, L., Chang, L., Hu, M., Fu, Y., Liu, F., Sun, H., Gu, P., Ndjiondjop, M., Sun, C. and Zhu, Z. 2023. The MYB Transcription Factor Seed Shattering 11 Controls Seed Shattering by Repressing Lignin Synthesis in African Rice. Plant Biotechnol. J., 21: 931-942.
25. Onohata, T. and Gomi, K. 2020. Overexpression of Jasmonate-Responsive OsbHLH034 in Rice Results in the Induction of Bacterial Blight Resistance via an Increase in Lignin Biosynthesis. Plant Cell Rep., 39: 1175–1184.
26. Pokotylo, I., Hodges, M., Kravets, V. and Ruelland, E. 2022. A Ménage à Trois: Salicylic Acid, Growth Inhibition, and Immunity. Trends Plant Sci., 27: 460–471.
27. Quentin, M., Allasia, V., Pegard, A., Allais, F., Ducrot, P. H., Favery, B., Levis, C., Martinet, S., Masur, C., Ponchet, M., Roby, D., Schlaich, N. L., Jouanin, L. and Keller, H. 2009. Imbalanced Lignin Biosynthesis Promotes the Sexual Reproduction of Homothallic Oomycete Pathogens. PLoS Pathog., 5(1): e1000264.
28. Rao, X., Huang, X., Zhou, Z. and Lin, X. 2013. An Improvement of the 2ˆ (–Delta Delta CT) Method for Quantitative Real-Time Polymerase Chain Reaction Data Analysis. Biostatistics Bioinformatics Biomathematics, 3: 71.
29. Saikia, R., Singh, T., Kumar, R., Srivastava, J., Srivastava, A. K., Singh, K. and Arora, D. K. 2003. Role of Salicylic Acid in Systemic Resistance Induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in Chickpea. Microbiol. Res., 158: 203–213.
30. Saleem, M., Fariduddin, Q. and Castroverde, C. D. M. 2021. Salicylic Acid: A Key Regulator of Redox Signalling and Plant Immunity. Plant Physiol. Biochem., 168: 381–397.
31. Sarbu, L. G., Bahrin, L. G., Babii, C., Stefan, M. and Birsa, M. L. 2019. Synthetic Flavonoids with Antimicrobial Activity: A Review. J. Appl. Microbiol., 127: 1282–1290.
32. Shu, B., Hu, Y. Y. and Luo, C. 2022. The Metabolites Involved in Phenylpropanoid Biosynthesis Increase the Susceptibility of Octoploid Strawberry to Crown Rot caused by Colletotrichum siamense. Sci. Hortic-Amsterdam., 306: 111447.
33. Tronchet, M., Balagué, C., Kroj, T., Jouanin, L. and Roby, D. 2010. Cinnamyl Alcohol Dehydrogenases‐C and D, Key Enzymes in Lignin Biosynthesis, Play an Essential Role in Disease Resistance in Arabidopsis. Mol. Plant Pathol., 11: 83–92.
34. Wang, J., Chen, S. H., Huang, Y. F. and Sun, S. 2006. Induced Resistance to Anthracnose of Camellia oleifera by Salicylic Acid. For. Res., 19: 629–632.
35. Wang, Y. and Liu, J. H. 2012. Exogenous Treatment with Salicylic Acid Attenuates Occurrence of Citrus Canker in Susceptible Navel Orange (Citrus sinensis Osbeck). J. Plant Physiol., 169: 1143–1149.
36. Wu, W., Ding, Y., Wei, W., Davis, R. E., Lee, I. M., Hammond, R. W. and Zhao, Y. 2012. Salicylic Acid‐Mediated Elicitation of Tomato Defence against Infection by Potato Purple Top Phytoplasma. Ann. Appl. Biol., 161: 36–45.
37. Xiao, S., Hu, Q., Shen, J., Liu, S., Yang, Z., Chen, K., Klosterman, S. J., Javornik, B., Zhang, X. and Zhu, L. 2021. GhMYB4 Downregulates Lignin Biosynthesis and Enhances Cotton Resistance to Verticillium dahliae. Plant Cell Rep., 40: 735–751.
38. Zhang, Q. Y., Zhang, L. Q., Song, L. L., Duan, K., Li, N., Wang, Y. X. and Gao, Q. H. 2016. The Different Interactions of Colletotrichum gloeosporioides with Two Strawberry Varieties and the Involvement of Salicylic Acid. Hortic. Res., 3(Article 16007): 1-10:
39. Zhang, Y., Hu, Y., Wang, Z., Lin, X., Li, Z., Ren, Y. and Zhao, J. 2023. The Translocase of the Inner Mitochondrial Membrane 22-2 Is Required for Mitochondrial Membrane Function during Arabidopsis Seed Development. J. Exp. Bot., 74: 4427-4448.
40. Zhang, Y., Peng, X., Liu, Y., Li, Y., Luo, Y., Wang, X. and Tang, H. 2018. Evaluation of Suitable Reference Genes for qRT-PCR Normalization in Strawberry (Fragaria×ananassa) under Different Experimental Conditions. BMC Mol. Biol., 19: 1-10.